Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.825 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Block size estimation for data partitioning in HPC applications using machine learning techniques

Thumbnail
View/Open
s40537-023-00862-w.pdf (2,090Mb)
 
10.1186/s40537-023-00862-w
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/401695

Show full item record
Cantini, Riccardo
Marozzo, Fabrizio
Orsino, Alessio
Talia, Domenico
Trunfio, Paolo
Badia Sala, Rosa MariaMés informacióMés informacióMés informació
Ejarque Artigas, Jorge
Vázquez-Novoa, Fernando
Document typeArticle
Defense date2024-01-16
PublisherSpringer Nature
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjecteFlows4HPC - Enabling dynamic and Intelligent workflows in the future EuroHPCecosystem (EC-H2020-955558)
ENABLING DYNAMIC AND INTELLIGENT WORKFLOWS IN THE FUTURE EUROHPCECOSYSTEM (AEI-PCI2021-121957)
BSC - COMPUTACION DE ALTAS PRESTACIONES VIII (AEI-PID2019-107255GB-C21)
Abstract
The extensive use of HPC infrastructures and frameworks for running data-intensive applications has led to a growing interest in data partitioning techniques and strategies. In fact, application performance can be heavily affected by how data are partitioned, which in turn depends on the selected size for data blocks, i.e. the block size. Therefore, finding an effective partitioning, i.e. a suitable block size, is a key strategy to speed-up parallel data-intensive applications and increase scalability. This paper describes a methodology, namely BLEST-ML (BLock size ESTimation through Machine Learning), for block size estimation that relies on supervised machine learning techniques. The proposed methodology was evaluated by designing an implementation tailored to dislib, a distributed computing library highly focused on machine learning algorithms built on top of the PyCOMPSs framework. We assessed the effectiveness of the provided implementation through an extensive experimental evaluation considering different algorithms from dislib, datasets, and infrastructures, including the MareNostrum 4 supercomputer. The results we obtained show the ability of BLEST-ML to efficiently determine a suitable way to split a given dataset, thus providing a proof of its applicability to enable the efficient execution of data-parallel applications in high performance environments.
CitationCantini, R. [et al.]. Block size estimation for data partitioning in HPC applications using machine learning techniques. "Journal of big data", 16 Gener 2024, vol. 11, article 19. 
URIhttp://hdl.handle.net/2117/401695
DOI10.1186/s40537-023-00862-w
ISSN2196-1115
Publisher versionhttps://journalofbigdata.springeropen.com/articles/10.1186/s40537-023-00862-w
Collections
  • Computer Sciences - Articles de revista [361]
  • Departament d'Arquitectura de Computadors - Articles de revista [1.137]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
s40537-023-00862-w.pdf2,090MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina