Improving human-robot interaction effectiveness in human-robot collaborative object transportation using force prediction
View/Open
Article (2,720Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/401426
Document typeConference report
Defense date2023
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
(embargoed until 2025-10-05)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectCANOPIES - A Collaborative Paradigm for Human Workers and Multi-Robot Teams in Precision Agriculture Systems (EC-H2020-101016906)
COLABORACION ROBOT-HUMANO PARA EL TRANSPORTE Y ENTREGA DE MERCANCIAS (AEI-PID2019-106702RB-C21)
COLABORACION ROBOT-HUMANO PARA EL TRANSPORTE Y ENTREGA DE MERCANCIAS (AEI-PID2019-106702RB-C21)
Abstract
In this work, we analyse the use of a prediction of the human’s force in a Human-Robot collaborative object transportation task at a middle distance. We check that this force prediction can improve multiple parameters associated with effective Human-Robot Interaction (HRI) such as percep- tion of the robot’s contribution to the task, comfort or trust in the robot in a physical Human Robot Interaction (pHRI). We present a Deep Learning model that allows to predict the force that a human will exert in the next 1 s using as inputs the force previously exerted by the human, the robot’s velocity and environment information obtained from the robot’s LiDAR. Its success rate is up to 92.3% in testset and up to 89.1% in real experiments. We demonstrate that this force prediction, in addition to being able to be used directly to detect changes in the human’s intention, can be processed to obtain an estimate of the human’s desired trajectory. We have validated this approach with a user study involving 18 volunteers.
Description
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
CitationDominguez-Vidal, J.E.; Sanfeliu, A. Improving human-robot interaction effectiveness in human-robot collaborative object transportation using force prediction. A: IEEE/RSJ International Conference on Intelligent Robots and Systems. "2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)". Institute of Electrical and Electronics Engineers (IEEE), 2023, p. 7839-7845. ISBN 978-1-6654-9190-7. DOI 10.1109/IROS55552.2023.10342517.
ISBN978-1-6654-9190-7
Publisher versionhttps://ieeexplore.ieee.org/document/10342517
Collections
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.564]
- VIS - Visió Artificial i Sistemes Intel·ligents - Ponències/Comunicacions de congressos [300]
- Doctorat en Automàtica, Robòtica i Visió - Ponències/Comunicacions de congressos [199]
Files | Description | Size | Format | View |
---|---|---|---|---|
2768-Improving- ... using-Force-Prediction.pdf![]() | Article | 2,720Mb | Restricted access |