Show simple item record

dc.contributorOtero Calviño, Beatriz
dc.contributorKucner, Tomas Piotr
dc.contributor.authorArellano Garcia, Silvia
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2024-02-06T12:56:40Z
dc.date.available2024-02-06T12:56:40Z
dc.date.issued2023-07-06
dc.identifier.urihttp://hdl.handle.net/2117/401142
dc.description.abstractSimulation is essential in robotics to evaluate models and techniques in a controlled setting before conducting experiments on tangible agents. However, developing simulation environments can be a challenging and time-consuming task. To address this issue, a proposed solution involves building a functional pipeline that generates 3D realistic terrains using GANs. The proposed model uses a DCGAN to generate heightmaps, which is trained on a custom dataset consisting of real heightmaps. Furthermore, an ESRGAN is used to improve the resolution and quality of the resulting heightmaps. To generate a texture according to the topography of the heightmap, chroma keying is used with previously selected textures. The heightmap and texture are then rendered and integrated, resulting in a realistic 3D surface. Together, these techniques enable the model to generate high-quality, realistic 3D terrains for use in robotic simulators, allowing for accurate and effective evaluations of robotics models and techniques.
dc.description.abstractLas simulaciones son esenciales en robótica para evaluar modelos y algoritmos en un entorno controlado antes de realizar experimentos en agentes tangibles. Sin embargo, desarrollar entornos de simulación puede ser una tarea compleja y laboriosa. Para abordar este problema, la solución propuesta se basa en el desarrollo de un sistema que genera terrenos 3D realistas utilizando Redes Generativas Antagónicas (GAN). El modelo propuesto utiliza una Red Generativa Antagónica Convolucional Profunda (DCGAN) para generar mapas de altura, entrenada con una base de datos personalizada compuesta por mapas de altura reales. Además, se utiliza una Red Generativa Antagónica de Súper Resolución (ESRGAN) para mejorar la resolución y calidad de los mapas de altura resultantes. Para generar una textura que concuerde con la topografía del mapa de altura, se utiliza la técnica del chroma keying con texturas previamente seleccionadas. Por último, el mapa de altura y la textura se integran y renderizan, resultando en una superficie 3D realista. En conjunto, estas técnicas permiten que el modelo genere terrenos 3D realistas y de alta calidad para ser utilizados en simuladores robóticos, permitiendo evaluaciones precisas y efectivas de modelos y técnicas en el ámbito de la robótica.
dc.description.abstractLes simulacions són essencials en robòtica per avaluar models i algorismes en un entorn controlat abans de realitzar experiments en agents tangibles. Tanmateix, desenvolupar entorns de simulació pot ser una tasca complicada i laboriosa. Per abordar aquesta qüestió, es proposa una solució que implica construir un sistema funcional que generi terrenys tridimensionals realistes utilitzant Xarxes Generatives Antagòniques (GAN). El model proposat fa servir una Xarxa Generativa Antagònica Convolucional Profunda (DCGAN) per generar mapes d'altura, que s'entrenen en una base de dades personalitzada formada per mapes d'altura reals. A més, es fa servir una Xarxa Generativa Antagònica de Superresolució (ESRGAN) per millorar la resolució i qualitat dels mapes d'altura resultants. Per generar una textura segons la topografia del mapa d'altura, s'utilitza la tècnica de \textit{chroma keying}, amb textures prèviament seleccionades. Finalment, el mapa d'altura i la textura s'integren i es renderitzen, obtenint una superfície tridimensional realista. Conjuntament, aquestes tècniques permeten que el model generi terrenys tridimensionals realistes i de gran qualitat per a l'ús en simuladors robòtics, permetent avaluacions precises i efectives de models i tècniques en robòtica.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsS'autoritza la difusió de l'obra mitjançant la llicència Creative Commons o similar 'Reconeixement-NoComercial- SenseObraDerivada'
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo
dc.subject.lcshImage processing
dc.subject.lcshComputer simulation
dc.subject.lcshNeural networks (Computer science)
dc.subject.otherTerrain rendering
dc.subject.otherRobotics simulators
dc.subject.otherSim2Real
dc.subject.otherGAN
dc.subject.other3D image generation
dc.subject.otherSimulación digital
dc.subject.otherRedes neuronales
dc.subject.otherGeneración de imágenes 3D
dc.titleA 3D Terrain Generator: Enhancing Robotics Simulations with GANs
dc.title.alternativeGenerador de Terrenos en 3D: Mejorando las Simulaciones de Robótica con GANs
dc.title.alternativeGenerador de Terrenys en 3D: Millorant les Simulacions de Robòtica amb GANs
dc.typeBachelor thesis
dc.subject.lemacImatges--Processament
dc.subject.lemacSimulació per ordinador
dc.subject.lemacXarxes neuronals (Informàtica)
dc.identifier.slugETSETB-230.178951
dc.rights.accessOpen Access
dc.date.updated2023-10-11T05:52:31Z
dc.audience.educationlevelGrau
dc.audience.mediatorEscola Tècnica Superior d'Enginyeria de Telecomunicació de Barcelona
dc.audience.degreeGRAU EN ENGINYERIA DE TECNOLOGIES I SERVEIS DE TELECOMUNICACIÓ (Pla 2015)
dc.contributor.covenanteeAalto-yliopisto


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record