Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.736 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria Electrònica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fault detection and diagnosis of a photovoltaic system based on deep learning using the combination of a Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU)

Thumbnail
View/Open
sustainability-16-01012-v3.pdf (6,599Mb)
 
10.3390/su16031012
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/400474

Show full item record
Faris Amiri, Ahmed
Kichou, Sofiane
Oudira, Houcine
Chouder, Aissa
Silvestre Bergés, SantiagoMés informacióMés informacióMés informació
Document typeArticle
Defense date2024-01-24
PublisherMultidisciplinary Digital Publishing Institute (MDPI)
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
Abstract
The meticulous monitoring and diagnosis of faults in photovoltaic (PV) systems enhances their reliability and facilitates a smooth transition to sustainable energy. This paper introduces a novel application of deep learning for fault detection and diagnosis in PV systems, employing a three-step approach. Firstly, a robust PV model is developed and fine-tuned using a heuristic optimization approach. Secondly, a comprehensive database is constructed, incorporating PV model data alongside monitored module temperature and solar irradiance for both healthy and faulty operation conditions. Lastly, fault classification utilizes features extracted from a combination consisting of a Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU). The amalgamation of parallel and sequential processing enables the neural network to leverage the strengths of both convolutional and recurrent layers concurrently, facilitating effective fault detection and diagnosis. The results affirm the proposed technique’s efficacy in detecting and classifying various PV fault types, such as open circuits, short circuits, and partial shading. Furthermore, this work underscores the significance of dividing fault detection and diagnosis into two distinct steps rather than employing deep learning neural networks to determine fault types directly.
CitationFaris, A. [et al.]. Fault detection and diagnosis of a photovoltaic system based on deep learning using the combination of a Convolutional Neural Network (CNN) and Bidirectional Gated Recurrent Unit (Bi-GRU). "Sustainability (Switzerland)", 24 Gener 2024, vol. 16, núm. 3, article 1012. 
URIhttp://hdl.handle.net/2117/400474
DOI10.3390/su16031012
ISSN2071-1050
Publisher versionhttps://www.mdpi.com/2071-1050/16/3/1012
Collections
  • Departament d'Enginyeria Electrònica - Articles de revista [1.850]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
sustainability-16-01012-v3.pdf6,599MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina