Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
14.368 Articles in journals published by the UPC
You are here:
View Item 
  •   DSpace Home
  • Revistes
  • SORT (Statistics and Operations Research Transactions)
  • 2023: Vol. 47, Núm. 1
  • View Item
  •   DSpace Home
  • Revistes
  • SORT (Statistics and Operations Research Transactions)
  • 2023: Vol. 47, Núm. 1
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Data wrangling, computational burden, automation, robustness and accuracy in ecological inference forecasting of R×C tables

Thumbnail
View/Open
47.1.3.Pavia-Romero.pdf (1,247Mb)
47.1.3.Pavia-Romero.zip (1,969Mb)
 
10.57645/20.8080.02.4
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/397846

Show full item record
Pavía, Jose M.
Romero, Rafael
Document typeArticle
Defense date2023-06-12
PublisherInstitut d'Estadística de Catalunya
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper assesses the two current major alternatives for ecological inference, based on a multinomial-Dirichlet Bayesian model and on mathematical programming. Their performance is evaluated in a database made up of almost 2000 real datasets for which the actual cross-distributions are known. The analysis reveals both approaches as complementarity, each one of them performing better in a different area of the simplex space, although with Bayesian solutions deteriorating when the amount of information is scarce. After offering some guidelines regarding the appropriate contexts for employing each one of the algorithms, we conclude with some ideas for exploiting their complementarities.
CitationPavía, J.M.; Romero, R. Data wrangling, computational burden, automation, robustness and accuracy in ecological inference forecasting of R×C tables. "SORT", 12 Juny 2023, vol. 47, p. 151-186. 
URIhttp://hdl.handle.net/2117/397846
DOI10.57645/20.8080.02.4
ISSN1696-2281
Collections
  • SORT (Statistics and Operations Research Transactions) - 2023: Vol. 47, Núm. 1 [5]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
47.1.3.Pavia-Romero.pdf1,247MbPDFView/Open
47.1.3.Pavia-Romero.zip1,969Mbapplication/zipView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina