Show simple item record

dc.contributor.authorGómez-Rubio, Virgilio
dc.contributor.authorCameletti, Michela
dc.contributor.authorBlangiardo, Marta
dc.date.accessioned2023-12-12T17:05:45Z
dc.date.available2023-12-12T17:05:45Z
dc.date.issued2022-12-19
dc.identifier.citationGómez-Rubio, V.; Cameletti, M.; Blangiardo, M. Missing data analysis and imputation via latent Gaussian Markov random fields. "SORT", 19 Desembre 2022, vol. 46, p. 217-244.
dc.identifier.issn1696-2281
dc.identifier.urihttp://hdl.handle.net/2117/397839
dc.description.abstractThis paper recasts the problem of missing values in the covariates of a regression model as a latent Gaussian Markov random field (GMRF) model in a fully Bayesian framework. The proposed approach is based on the definition of the covariate imputation sub-model as a latent effect with a GMRF structure. This formulation works for continuous covariates but for categorical covariates a typical multiple imputation approach is employed. Both techniques can be easily combined for the case in which continuous and categorical variables have missing values. The resulting Bayesian hierarchical model naturally fts within the integrated nested Laplace approximation (INLA) framework, which is used for model fitting. Hence, this work fills an important gap in the INLA methodology as it allows to treat models with missing values in the covariates. As in any other fully Bayesian framework, by relying on INLA for model fitting it is possible to formulate a joint model for the data, the imputed covariates and their missingness mechanism. In this way, it is possible to tackle the more general problem of assessing the missingness mechanism by conducting a sensitivity analysis on the different alternatives to model the non-observed covariates. Finally, the proposed approach is illustrated in two examples on modeling health risk factors and disease mapping.
dc.format.extent28 p.
dc.language.isoeng
dc.publisherInstitut d'Estadística de Catalunya
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica
dc.subject.lcshSampling (Statistics)
dc.subject.lcshMathematical statistics
dc.subject.otherimputation
dc.subject.othermissing values
dc.subject.otherGMRF
dc.subject.otherINLA
dc.subject.othersensitivity analysis
dc.titleMissing data analysis and imputation via latent Gaussian Markov random fields
dc.typeArticle
dc.subject.lemac62D05 Teoria del mostreig, enquestes de mostreig
dc.subject.lemac62F Inferència paramètrica
dc.subject.lemac62M Inferència dels processos estocàstics
dc.identifier.doi10.2436/20.8080.02.124
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::62 Statistics::62D05 Sampling theory, sample surveys
dc.subject.amsClassificació AMS::62 Statistics::62F Parametric inference
dc.subject.amsClassificació AMS::62 Statistics::62M Inference from stochastic processes
dc.rights.accessOpen Access
local.citation.publicationNameSORT
local.citation.volume46
local.citation.startingPage217
local.citation.endingPage244


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record