Deep learning-based partial transfer fault diagnosis methodology for electromechanical systems
View/Open
Preprint (581,3Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/397444
Document typeConference report
Defense date2023
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Recently, transfer learning technology has provided valuable solutions to problems that are present in machinery with industrial applications. Through the use of transfer learning, basic diagnostic problems have been well addressed, especially in scenarios in which the training and test data are from different distributions. However, there are scenarios that require further consideration, such as partial fault diagnosis. In this paper, a deep learning-based fault diagnosis methodology is proposed to address the partial fault diagnosis problem, in which the data from the unsupervised target domain represents a category subspace of the full machine-state-label space. Specifically, a domain adaptation with adversarial learning schemes is proposed to achieve partial domain adaptation. The experimental results on an electromechanical test bench suggest that the proposed approach offers a practical solution to this partial fault diagnosis problem.
CitationArellano, F. [et al.]. Deep learning-based partial transfer fault diagnosis methodology for electromechanical systems. A: IEEE International Conference on Emerging Technologies and Factory Automation. "2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation (ETFA)". 2023, ISBN 979-8-3503-3991-8. DOI 10.1109/ETFA54631.2023.10275407.
ISBN979-8-3503-3991-8
Publisher versionhttps://ieeexplore.ieee.org/document/10275407
Collections
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.520]
- Departament d'Enginyeria Electrònica - Ponències/Comunicacions de congressos [1.746]
- MCIA - Motion Control and Industrial Applications Research Group - Ponències/Comunicacions de congressos [137]
Files | Description | Size | Format | View |
---|---|---|---|---|
ETFA2023_ArellanoEspitiaetAL.pdf | Preprint | 581,3Kb | Restricted access |