The rado multiplicity problem in vector spaces over finite fields

View/Open
https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-108
Includes usage data since 2022
Cita com:
hdl:2117/396369
Document typeConference lecture
Defense date2023
PublisherMuni press
Rights accessOpen Access
This work is protected by the corresponding intellectual and industrial property rights.
Except where otherwise noted, its contents are licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
ProjectCOMBINATORIA GEOMETRICA, ALGEBRAICA Y PROBABILISTICA (AEI-MTM2017-82166-P)
COMBINATORIA: NUEVAS TENDENCIAS Y APLICACIONES (AEI-PID2020-113082GB-I00)
COMBINATORIA: NUEVAS TENDENCIAS Y APLICACIONES (AEI-PID2020-113082GB-I00)
Abstract
We study an analogue of the Ramsey multiplicity problem for additive structures, establishing the minimum number of monochromatic $3$-APs in $3$-colorings of $\mathbb{F}_3^n$ and obtaining the first non-trivial lower bound for the minimum number of monochromatic $4$-APs in $2$-colorings of $\mathbb{F}_5^n$. The former parallels results by Cumings et al.~\cite{CummingsEtAl_2013} in extremal graph theory and the latter improves upon results of Saad and Wolf~\cite{SaadWolf_2017}. Lower bounds are notably obtained by extending the flag algebra calculus of Razborov~\cite{razborov2007flag}.
CitationRue, J.; Spiegel, C. The rado multiplicity problem in vector spaces over finite fields. A: European Conference on Combinatorics, Graph Theory and Applications. "Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications: Prague, Czech Republic: August 28-September 1, 2023". Muni press, 2023, p. 784-789. ISBN 2788-3116. DOI https://doi.org/10.5817/CZ.MUNI.EUROCOMB23-108.
ISBN2788-3116
Publisher versionhttps://journals.muni.cz/eurocomb/article/view/35642
Other identifiershttps://arxiv.org/abs/2304.00400
Files | Description | Size | Format | View |
---|---|---|---|---|
Additive_Flag_Algebras.pdf | 137,8Kb | View/Open |