dc.contributor.author | Marateb, Hamid Reza |
dc.contributor.author | Norouzirad, Mina |
dc.contributor.author | Tavakolian, Kouhyar |
dc.contributor.author | Aminorroaya, Faezeh |
dc.contributor.author | Mohebbian, Mohammad Reza |
dc.contributor.author | Mañanas Villanueva, Miguel Ángel |
dc.contributor.author | Romero Lafuente, Sergio |
dc.contributor.author | Samí, Ramin |
dc.contributor.author | Mansourian Gharakozlou, Marjan |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial |
dc.date.accessioned | 2023-11-10T12:18:44Z |
dc.date.available | 2023-11-10T12:18:44Z |
dc.date.issued | 2023-10-31 |
dc.identifier.citation | Marateb, H. [et al.]. Predicting COVID-19 hospital stays with Kolmogorov-Gabor polynomials: charting the future of care. "Information", 31 Octubre 2023, vol. 14, núm. 11, article 590. |
dc.identifier.issn | 2078-2489 |
dc.identifier.uri | http://hdl.handle.net/2117/396244 |
dc.description.abstract | Optimal allocation of ward beds is crucial given the respiratory nature of COVID-19, which necessitates urgent hospitalization for certain patients. Several governments have leveraged technology to mitigate the pandemic’s adverse impacts. Based on clinical and demographic variables assessed upon admission, this study predicts the length of stay (LOS) for COVID-19 patients in hospitals. The Kolmogorov–Gabor polynomial (a.k.a., Volterra functional series) was trained using regularized least squares and validated on a dataset of 1600 COVID-19 patients admitted to Khorshid Hospital in the central province of Iran, and the five-fold internal cross-validated results were presented. The Volterra method provides flexibility, interactions among variables, and robustness. The most important features of the LOS prediction system were inflammatory markers, bicarbonate (HCO3), and fever—the adj. R2 and Concordance Correlation Coefficients were 0.81 [95% CI: 0.79–0.84] and 0.94 [0.93–0.95], respectively. The estimation bias was not statistically significant (p-value = 0.777; paired-sample t-test). The system was further analyzed to predict “normal” LOS = 7 days versus “prolonged” LOS > 7 days groups. It showed excellent balanced diagnostic accuracy and agreement rate. However, temporal and spatial validation must be considered to generalize the model. This contribution is hoped to pave the way for hospitals and healthcare providers to manage their resources better. |
dc.description.sponsorship | This research was funded by the Beatriu de Pinós post-doctoral programme from the Office of the Secretary of Universities and Research from the Ministry of Business and Knowledge of the Government of Catalonia programme: 2020 BP 00261 (H.M.); National Funds through the FCT—Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications) (M.N.); the Ministry of Science and Innovation [Ministerio de Ciencia e Innovación (MICINN)], Spain, under contract PID2020-117751RBI00 (M.A.M., S.R.L.). CIBER-BBN is an initiative of the Instituto de Salud Carlos III, Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. |
dc.language.iso | eng |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) |
dc.rights | Attribution 4.0 International |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica |
dc.subject.lcsh | Least squares |
dc.subject.lcsh | Hospitals -- Planning |
dc.subject.lcsh | COVID-19 (Disease) |
dc.subject.other | COVID-19 |
dc.subject.other | Kolmogorov-Gabor polynomials |
dc.subject.other | Length of stay |
dc.subject.other | Hospital capacity |
dc.subject.other | Regularized least squares |
dc.subject.other | Validation studies |
dc.title | Predicting COVID-19 hospital stays with Kolmogorov-Gabor polynomials: charting the future of care |
dc.type | Article |
dc.subject.lemac | Mínims quadrats |
dc.subject.lemac | Hospitals -- Planificació |
dc.subject.lemac | COVID-19 (Malaltia) |
dc.contributor.group | Universitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy |
dc.identifier.doi | 10.3390/info14110590 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.mdpi.com/2078-2489/14/11/590 |
dc.rights.access | Open Access |
local.identifier.drac | 37742999 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117751RB-I00/ES/TECNOLOGIAS INNOVADORAS PARA MONITORIZAR Y PERSONALIZAR LA REHABILITACION INTERDISCIPLINAR DE PACIENTES DE CUIDADO INTENSIVO/ |
local.citation.author | Marateb, H.; Norouzirad, M.; Tavakolian, K.; Aminorroaya, F.; Mohebbian, M.; Mañanas, M.A.; Romero, S.; Samí, R.; Mansourian, M. |
local.citation.publicationName | Information |
local.citation.volume | 14 |
local.citation.number | 11, article 590 |