Show simple item record

dc.contributor.authorMarateb, Hamid Reza
dc.contributor.authorNorouzirad, Mina
dc.contributor.authorTavakolian, Kouhyar
dc.contributor.authorAminorroaya, Faezeh
dc.contributor.authorMohebbian, Mohammad Reza
dc.contributor.authorMañanas Villanueva, Miguel Ángel
dc.contributor.authorRomero Lafuente, Sergio
dc.contributor.authorSamí, Ramin
dc.contributor.authorMansourian Gharakozlou, Marjan
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2023-11-10T12:18:44Z
dc.date.available2023-11-10T12:18:44Z
dc.date.issued2023-10-31
dc.identifier.citationMarateb, H. [et al.]. Predicting COVID-19 hospital stays with Kolmogorov-Gabor polynomials: charting the future of care. "Information", 31 Octubre 2023, vol. 14, núm. 11, article 590.
dc.identifier.issn2078-2489
dc.identifier.urihttp://hdl.handle.net/2117/396244
dc.description.abstractOptimal allocation of ward beds is crucial given the respiratory nature of COVID-19, which necessitates urgent hospitalization for certain patients. Several governments have leveraged technology to mitigate the pandemic’s adverse impacts. Based on clinical and demographic variables assessed upon admission, this study predicts the length of stay (LOS) for COVID-19 patients in hospitals. The Kolmogorov–Gabor polynomial (a.k.a., Volterra functional series) was trained using regularized least squares and validated on a dataset of 1600 COVID-19 patients admitted to Khorshid Hospital in the central province of Iran, and the five-fold internal cross-validated results were presented. The Volterra method provides flexibility, interactions among variables, and robustness. The most important features of the LOS prediction system were inflammatory markers, bicarbonate (HCO3), and fever—the adj. R2 and Concordance Correlation Coefficients were 0.81 [95% CI: 0.79–0.84] and 0.94 [0.93–0.95], respectively. The estimation bias was not statistically significant (p-value = 0.777; paired-sample t-test). The system was further analyzed to predict “normal” LOS = 7 days versus “prolonged” LOS > 7 days groups. It showed excellent balanced diagnostic accuracy and agreement rate. However, temporal and spatial validation must be considered to generalize the model. This contribution is hoped to pave the way for hospitals and healthcare providers to manage their resources better.
dc.description.sponsorshipThis research was funded by the Beatriu de Pinós post-doctoral programme from the Office of the Secretary of Universities and Research from the Ministry of Business and Knowledge of the Government of Catalonia programme: 2020 BP 00261 (H.M.); National Funds through the FCT—Fundação para a Ciência e a Tecnologia, I.P., under the scope of the projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications) (M.N.); the Ministry of Science and Innovation [Ministerio de Ciencia e Innovación (MICINN)], Spain, under contract PID2020-117751RBI00 (M.A.M., S.R.L.). CIBER-BBN is an initiative of the Instituto de Salud Carlos III, Spain. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica
dc.subject.lcshLeast squares
dc.subject.lcshHospitals -- Planning
dc.subject.lcshCOVID-19 (Disease)
dc.subject.otherCOVID-19
dc.subject.otherKolmogorov-Gabor polynomials
dc.subject.otherLength of stay
dc.subject.otherHospital capacity
dc.subject.otherRegularized least squares
dc.subject.otherValidation studies
dc.titlePredicting COVID-19 hospital stays with Kolmogorov-Gabor polynomials: charting the future of care
dc.typeArticle
dc.subject.lemacMínims quadrats
dc.subject.lemacHospitals -- Planificació
dc.subject.lemacCOVID-19 (Malaltia)
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
dc.identifier.doi10.3390/info14110590
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/2078-2489/14/11/590
dc.rights.accessOpen Access
local.identifier.drac37742999
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117751RB-I00/ES/TECNOLOGIAS INNOVADORAS PARA MONITORIZAR Y PERSONALIZAR LA REHABILITACION INTERDISCIPLINAR DE PACIENTES DE CUIDADO INTENSIVO/
local.citation.authorMarateb, H.; Norouzirad, M.; Tavakolian, K.; Aminorroaya, F.; Mohebbian, M.; Mañanas, M.A.; Romero, S.; Samí, R.; Mansourian, M.
local.citation.publicationNameInformation
local.citation.volume14
local.citation.number11, article 590


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record