Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.147 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting COVID-19 hospital stays with Kolmogorov-Gabor polynomials: charting the future of care

Thumbnail
View/Open
Published paper (2,050Mb)
 
10.3390/info14110590
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/396244

Show full item record
Marateb, Hamid RezaMés informacióMés informació
Norouzirad, Mina
Tavakolian, Kouhyar
Aminorroaya, Faezeh
Mohebbian, Mohammad Reza
Mañanas Villanueva, Miguel ÁngelMés informacióMés informacióMés informació
Romero Lafuente, SergioMés informacióMés informacióMés informació
Samí, Ramin
Mansourian Gharakozlou, Marjan
Document typeArticle
Defense date2023-10-31
PublisherMultidisciplinary Digital Publishing Institute (MDPI)
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjectTECNOLOGIAS INNOVADORAS PARA MONITORIZAR Y PERSONALIZAR LA REHABILITACION INTERDISCIPLINAR DE PACIENTES DE CUIDADO INTENSIVO (AEI-PID2020-117751RB-I00)
Abstract
Optimal allocation of ward beds is crucial given the respiratory nature of COVID-19, which necessitates urgent hospitalization for certain patients. Several governments have leveraged technology to mitigate the pandemic’s adverse impacts. Based on clinical and demographic variables assessed upon admission, this study predicts the length of stay (LOS) for COVID-19 patients in hospitals. The Kolmogorov–Gabor polynomial (a.k.a., Volterra functional series) was trained using regularized least squares and validated on a dataset of 1600 COVID-19 patients admitted to Khorshid Hospital in the central province of Iran, and the five-fold internal cross-validated results were presented. The Volterra method provides flexibility, interactions among variables, and robustness. The most important features of the LOS prediction system were inflammatory markers, bicarbonate (HCO3), and fever—the adj. R2 and Concordance Correlation Coefficients were 0.81 [95% CI: 0.79–0.84] and 0.94 [0.93–0.95], respectively. The estimation bias was not statistically significant (p-value = 0.777; paired-sample t-test). The system was further analyzed to predict “normal” LOS = 7 days versus “prolonged” LOS > 7 days groups. It showed excellent balanced diagnostic accuracy and agreement rate. However, temporal and spatial validation must be considered to generalize the model. This contribution is hoped to pave the way for hospitals and healthcare providers to manage their resources better.
CitationMarateb, H. [et al.]. Predicting COVID-19 hospital stays with Kolmogorov-Gabor polynomials: charting the future of care. "Information", 31 Octubre 2023, vol. 14, núm. 11, article 590. 
URIhttp://hdl.handle.net/2117/396244
DOI10.3390/info14110590
ISSN2078-2489
Publisher versionhttps://www.mdpi.com/2078-2489/14/11/590
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.539]
  • BIOART - BIOsignal Analysis for Rehabilitation and Therapy - Articles de revista [98]
  • COVID-19 - Col·lecció especial COVID-19 [676]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
information-14-00590.pdfPublished paper2,050MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina