Actuator fault estimation using optimization-based learning techniques for linear parameter varying systems with unreliable scheduling parameters
View/Open
Article EAAI (713,2Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/396188
Document typeArticle
Defense date2024-01-01
PublisherElsevier
Rights accessRestricted access - publisher's policy
(embargoed until 2026-01)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
A novel fault diagnosis procedure is proposed in this paper to estimate faults using a linear parameter varying (LPV) model whose scheduling parameters depend on the fault. A wrong determination of the operating conditions could lead the system to an undesired performance or even to an unstable situation, when classical fault diagnosis approaches are applied. This paper addresses this issue by formulating fault diagnosis as a dynamic optimization problem, solved by using a novel hybrid technique that combines a Luenberger-based observer with artificial intelligent (AI) optimization-based algorithms. The observer supervises the health of the system, while AI-based algorithms are able to reconstruct the faulty signal in real-time when the observer determines that the system is under a fault. The efficiency of the proposed fault diagnosis scheme, the three AI-based algorithms based on artificial bee colony and particle swarm optimization, and the gradient-based algorithm developed in this paper, are assessed using a numerical example.
CitationSanjuan, A.; Nejjari, F.; Sarrate, R. Actuator fault estimation using optimization-based learning techniques for linear parameter varying systems with unreliable scheduling parameters. "Engineering applications of artificial intelligence", 1 Gener 2024, vol. 127, part A, núm. article 107247.
ISSN1873-6769
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0952197623014318
Files | Description | Size | Format | View |
---|---|---|---|---|
D4_FaultDiagIA_EAAI_Sanjuan.pdf | Article EAAI | 713,2Kb | Restricted access |