Constructions of b-semitoric systems
Cita com:
hdl:2117/395832
Document typeArticle
Defense date2023-07-01
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution 4.0 International
ProjectGEOMETRIA, ALGEBRA, TOPOLOGIA Y APLICACIONES MULTIDISCIPLINARES (AEI-PID2019-103849GB-I00)
GRUPOS TOPOLOGICOS. SUBGRUPOS DE ESPACIOS VECTORIALES TOPOLOGICOS Y DE GRUPOS COMPACTOS. (MEC-MTM2006-03036)
CELULAS SOLARES TANDEM DE SI PEROVSKITA DE ALTA EFICIENCIA (AEI-PCIN-2017-014)
GRUPOS TOPOLOGICOS. SUBGRUPOS DE ESPACIOS VECTORIALES TOPOLOGICOS Y DE GRUPOS COMPACTOS. (MEC-MTM2006-03036)
CELULAS SOLARES TANDEM DE SI PEROVSKITA DE ALTA EFICIENCIA (AEI-PCIN-2017-014)
Abstract
In this article, we introduce b-semitoric systems as a generalization of semitoric systems, specifically tailored for b-symplectic manifolds. The objective of this article is to furnish a collection of examples and investigate the distinctive characteristics of these systems. A b-semitoric system is a four-dimensional b-integrable system that satisfies certain conditions: one of its momentum map components is proper and generates an effective global S1-action and all singular points are non-degenerate and devoid of hyperbolic components. To illustrate this concept, we provide five examples of b-semitoric systems by modifying the coupled spin oscillator and the coupled angular momenta, and we also classify their singular points. Additionally, we describe the dynamics of these systems through the image of their respective momentum maps.
CitationBrugués, J. [et al.]. Constructions of b-semitoric systems. "Journal of mathematical physics", 1 Juliol 2023, vol. 64, núm. 7, article 072703.
ISSN0022-2488
Files | Description | Size | Format | View |
---|---|---|---|---|
postprint.pdf | 5,289Mb | View/Open | ||
072703_1_5.0152551.pdf | 9,774Mb | View/Open |