Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.822 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

MAGNNETO: A graph neural network-based multi-agent system for traffic engineering

Thumbnail
View/Open
Bernardez et al.pdf (1,864Mb)
 
10.1109/TCCN.2023.3235719
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/395413

Show full item record
Bernárdez Gil, Guillermo
Suárez-Varela Maciá, José RafaelMés informacióMés informació
López Brescó, AlbertMés informació
Shi, Xiang
Xiao, Shihan
Cheng, Xiangle
Barlet Ros, PereMés informacióMés informacióMés informació
Cabellos Aparicio, AlbertoMés informacióMés informacióMés informació
Document typeArticle
Defense date2023-04
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectINVESTIGACION EN FUTURAS REDES TOTALMENTE OPTIMIZADAS MEDIANTE INTELIGENCIA ARTIFICIAL - A (AEI-PID2020-118011GB-C21)
Abstract
Current trends in networking propose the use of Machine Learning (ML) for a wide variety of network optimization tasks. As such, many efforts have been made to produce ML-based solutions for Traffic Engineering (TE), which is a fundamental problem in Internet Service Provider (ISP) networks. Nowadays, state-of-the-art TE optimizers rely on traditional optimization techniques, such as Local search, Constraint Programming, or Linear programming. In this paper, we present MAGNNETO, a distributed ML-based framework that leverages Multi-Agent Reinforcement Learning and Graph Neural Networks for distributed TE optimization. MAGNNETO deploys a set of agents across the network that learn and communicate in a distributed fashion via message exchanges between neighboring agents. Particularly, we apply this framework to optimize link weights in Open Shortest Path First (OSPF), with the goal of minimizing network congestion. In our evaluation, we compare MAGNNETO against several state-of-the-art TE optimizers in more than 75 topologies (up to 153 nodes and 354 links), including realistic traffic loads. Our experimental results show that, thanks to its distributed nature, MAGNNETO achieves comparable performance to state-of-the-art TE optimizers with significantly lower execution times. Moreover, our ML-based solution demonstrates a strong generalization capability to successfully operate in new networks unseen during training.
CitationBernárdez, G. [et al.]. MAGNNETO: A graph neural network-based multi-agent system for traffic engineering. "IEEE transactions on cognitive communications and networking", Abril 2023, vol. 9, núm. 2, p. 494-506. 
URIhttp://hdl.handle.net/2117/395413
DOI10.1109/TCCN.2023.3235719
ISSN2332-7731
Publisher versionhttps://ieeexplore.ieee.org/document/10013773
Collections
  • Departament d'Arquitectura de Computadors - Articles de revista [1.137]
  • Doctorat en Arquitectura de Computadors - Articles de revista [202]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Bernardez et al.pdf1,864MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina