A hybrid multi-start metaheuristic scheduler for astronomical observations
Cita com:
hdl:2117/395090
Document typeArticle
Defense date2023-11
PublisherElsevier
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
In this paper, we investigate Astronomical Observations Scheduling which is a type of Multi-Objective Combinatorial Optimization Problem, and detail its specific challenges and requirements and propose the Hybrid Accumulative Planner (HAP), a hybrid multi-start metaheuristic scheduler able to adapt to the different variations and demands of the problem. To illustrate the capabilities of the proposal in a real-world scenario, HAP is tested on the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (Ariel) mission of the European Space Agency (ESA), and compared with other studies on this subject including an Evolutionary Algorithm (EA) approach. The results show that the proposal outperforms the other methods in the evaluation and achieves better scientific goals than its peers. The consistency of HAP in obtaining better results on the available datasets for Ariel, with various sizes and constraints, demonstrates its competence in scalability and adaptability to different conditions of the problem.
CitationNakhjiri, N. [et al.]. A hybrid multi-start metaheuristic scheduler for astronomical observations. "Engineering applications of artificial intelligence", Novembre 2023, vol. 126, Part B, article 106856.
ISSN0952-1976
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0952197623010400
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
1-s2.0-S0952197623010400-main.pdf | 1,209Mb | View/Open |