Show simple item record

dc.contributor.authorGarin Escriva, Moises
dc.contributor.authorPasanen, Toni P.
dc.contributor.authorLópez Rodríguez, Gema
dc.contributor.authorVähänissi, Ville
dc.contributor.authorChen, Kexun
dc.contributor.authorMartín García, Isidro
dc.contributor.authorSavin, Hele
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d’Enginyeria Gràfica i de Disseny
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2023-10-05T13:15:31Z
dc.date.available2023-10-05T13:15:31Z
dc.date.issued2023-09-27
dc.identifier.citationGarin, M. [et al.]. Black ultra-thin crystalline silicon wafers reach the 4n2 absorption limit–application to IBC solar cells. "Small", 27 Setembre 2023, vol. 19, núm. 39; article 2302250.
dc.identifier.issn1613-6829
dc.identifier.urihttp://hdl.handle.net/2117/394685
dc.description.abstractCutting costs by progressively decreasing substrate thickness is a common theme in the crystalline silicon photovoltaic industry for the last decades, since drastically thinner wafers would significantly reduce the substrate-related costs. In addition to the technological challenges concerning wafering and handling of razor-thin flexible wafers, a major bottleneck is to maintain high absorption in those thin wafers. For the latter, advanced light-trapping techniques become of paramount importance. Here we demonstrate that by applying state-of-the-art black-Si nanotexture produced by DRIE on thin uncommitted wafers, the maximum theoretical absorption (Yablonovitch's 4n2 absorption limit), that is, ideal light trapping, is reached with wafer thicknesses as low as 40, 20, and 10 µm when paired with a back reflector. Due to the achieved promising optical properties the results are implemented into an actual thin interdigitated back contacted solar cell. The proof-of-concept cell, encapsulated in glass, achieved a 16.4% efficiency with an JSC = 35 mA cm-2, representing a 43% improvement in output power with respect to the reference polished cell. These results demonstrate the vast potential of black silicon nanotexture in future extremely-thin silicon photovoltaics.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.subjectÀrees temàtiques de la UPC::Energies
dc.subject.lcshSolar panels
dc.titleBlack ultra-thin crystalline silicon wafers reach the 4n2 absorption limit–application to IBC solar cells
dc.typeArticle
dc.subject.lemacPanells solars
dc.contributor.groupUniversitat Politècnica de Catalunya. MNT-Solar - Grup de Micro i Nano Tecnologies per Energia Solar
dc.identifier.doi10.1002/smll.202302250
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/10.1002/smll.202302250
dc.rights.accessOpen Access
local.identifier.drac36664742
dc.description.versionPostprint (published version)
local.citation.authorGarin, M.; Pasanen, T.; Lopez, G.; Vähänissi, V.; Chen, K.; Martin, I.; Savin, H.
local.citation.publicationNameSmall
local.citation.volume19
local.citation.number39; article 2302250


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record