Comparison of the antibacterial effect of silver nanoparticles and a multifunctional antimicrobial peptide on titanium surface
View/Open
Cita com:
hdl:2117/393223
Document typeArticle
Defense date2023-06-04
PublisherMultidisciplinary Digital Publishing Institute (MDPI)
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Titanium implantation success may be compromised by Staphylococcus aureus surface colonization and posterior infection. To avoid this issue, different strategies have been investigated to promote an antibacterial character to titanium. In this work, two antibacterial agents (silver nanoparticles and a multifunctional antimicrobial peptide) were used to coat titanium surfaces. The modulation of the nanoparticle (˜32.1 ± 9.4 nm) density on titanium could be optimized, and a sequential functionalization with both agents was achieved through a two-step functionalization method by means of surface silanization. The antibacterial character of the coating agents was assessed individually as well as combined. The results have shown that a reduction in bacteria after 4 h of incubation can be achieved on all the coated surfaces. After 24 h of incubation, however, the individual antimicrobial peptide coating was more effective than the silver nanoparticles or their combination against Staphylococcus aureus. All tested coatings were non-cytotoxic for eukaryotic cells.
CitationMoreno, D. [et al.]. Comparison of the antibacterial effect of silver nanoparticles and a multifunctional antimicrobial peptide on titanium surface. "International journal of molecular sciences", 4 Juny 2023, vol. 24, núm. 11; article 9739.
ISSN1422-0067
Publisher versionhttps://www.mdpi.com/1422-0067/24/11/9739
Files | Description | Size | Format | View |
---|---|---|---|---|
Manuscript final.pdf | 894,9Kb | View/Open |