Show simple item record

dc.contributor.authorCastillo Reyes, Octavio
dc.contributor.authorHu, Xiangping
dc.contributor.authorWang, Bochen
dc.contributor.authorWang, Yanyi
dc.contributor.authorGuo, Zhenwei
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2023-09-07T06:52:47Z
dc.date.available2023-09-07T06:52:47Z
dc.date.issued2023-08-17
dc.identifier.citationCastillo, O. [et al.]. Electromagnetic imaging and deep learning for transition to renewable energies: a technology review. "Frontiers in Earth science", 17 Agost 2023, vol. 11.
dc.identifier.issn2296-6463
dc.identifier.urihttp://hdl.handle.net/2117/393193
dc.description.abstractElectromagnetic imaging is a technique that has been employed and perfected to investigate the Earth subsurface over the past three decades. Besides the traditional geophysical surveys (e.g., hydrocarbon exploration, geological mapping), several new applications have appeared (e.g., characterization of geothermal energy reservoirs, capture and storage of carbon dioxide, water prospecting, and monitoring of hazardous-waste deposits). The development of new numerical schemes, algorithms, and easy access to supercomputers have supported innovation throughout the geo-electromagnetic community. In particular, deep learning solutions have taken electromagnetic imaging technology to a different level. These emerging deep learning tools have significantly contributed to data processing for enhanced electromagnetic imaging of the Earth. Herein, we review innovative electromagnetic imaging technologies and deep learning solutions and their role in better understanding useful resources for the energy transition path. To better understand this landscape, we describe the physics behind electromagnetic imaging, current trends in its numerical modeling, development of computational tools (traditional approaches and emerging deep learning schemes), and discuss some key applications for the energy transition. We focus on the need to explore all the alternatives of technologies and expertise transfer to propel the energy landscape forward. We hope this review may be useful for the entire geo-electromagnetic community and inspire and drive the further development of innovative electromagnetic imaging technologies to power a safer future based on energy sources.
dc.description.sponsorshipThis work was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 955606 (DEEP-SEA) and No. 777778 (MATHROCKS). Furthermore, the research leading of this study has received funding from the Ministerio de Educación y Ciencia (Spain) under Project TED2021-131882B-C42.
dc.language.isoeng
dc.publisherFrontiers Media SA
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subjectÀrees temàtiques de la UPC::Física::Electromagnetisme
dc.subject.lcshHigh performance computing
dc.subject.lcshElectromagnetic fields -- Data processing
dc.subject.lcshDeep learning
dc.subject.otherElectromagnetic imaging
dc.subject.otherNumerical modeling
dc.subject.otherClean energies
dc.subject.otherExpertise transfer
dc.titleElectromagnetic imaging and deep learning for transition to renewable energies: a technology review
dc.typeArticle
dc.subject.lemacCàlcul intensiu (Informàtica)
dc.subject.lemacCamps electromagnètics -- Informàtica
dc.subject.lemacAprenentatge profund
dc.identifier.doi10.3389/feart.2023.1159910
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/feart.2023.1159910/full
dc.rights.accessOpen Access
local.identifier.drac36976089
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/777778/EU/Multiscale Inversion of Porous Rock Physics using High-Performance Simulators: Bridging the Gap between Mathematics and Geophysics/MATHROCKS
local.citation.authorCastillo, O.; Hu, X.; Wang, B.; Wang, Y.; Guo, Z.
local.citation.publicationNameFrontiers in Earth science
local.citation.volume11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record