Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.088 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electromagnetic imaging and deep learning for transition to renewable energies: a technology review

Thumbnail
View/Open
feart-11-1159910-2.pdf (13,78Mb)
 
10.3389/feart.2023.1159910
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/393193

Show full item record
Castillo Reyes, OctavioMés informacióMés informacióMés informació
Hu, Xiangping
Wang, Bochen
Wang, Yanyi
Guo, Zhenwei
Document typeArticle
Defense date2023-08-17
PublisherFrontiers Media SA
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjectMATHROCKS - Multiscale Inversion of Porous Rock Physics using High-Performance Simulators: Bridging the Gap between Mathematics and Geophysics (EC-H2020-777778)
Abstract
Electromagnetic imaging is a technique that has been employed and perfected to investigate the Earth subsurface over the past three decades. Besides the traditional geophysical surveys (e.g., hydrocarbon exploration, geological mapping), several new applications have appeared (e.g., characterization of geothermal energy reservoirs, capture and storage of carbon dioxide, water prospecting, and monitoring of hazardous-waste deposits). The development of new numerical schemes, algorithms, and easy access to supercomputers have supported innovation throughout the geo-electromagnetic community. In particular, deep learning solutions have taken electromagnetic imaging technology to a different level. These emerging deep learning tools have significantly contributed to data processing for enhanced electromagnetic imaging of the Earth. Herein, we review innovative electromagnetic imaging technologies and deep learning solutions and their role in better understanding useful resources for the energy transition path. To better understand this landscape, we describe the physics behind electromagnetic imaging, current trends in its numerical modeling, development of computational tools (traditional approaches and emerging deep learning schemes), and discuss some key applications for the energy transition. We focus on the need to explore all the alternatives of technologies and expertise transfer to propel the energy landscape forward. We hope this review may be useful for the entire geo-electromagnetic community and inspire and drive the further development of innovative electromagnetic imaging technologies to power a safer future based on energy sources.
CitationCastillo, O. [et al.]. Electromagnetic imaging and deep learning for transition to renewable energies: a technology review. "Frontiers in Earth science", 17 Agost 2023, vol. 11. 
URIhttp://hdl.handle.net/2117/393193
DOI10.3389/feart.2023.1159910
ISSN2296-6463
Publisher versionhttps://www.frontiersin.org/articles/10.3389/feart.2023.1159910/full
Collections
  • Departament d'Arquitectura de Computadors - Articles de revista [1.143]
  • Computer Applications in Science & Engineering - Articles de revista [314]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
feart-11-1159910-2.pdf13,78MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina