Sign language translation from instructional videos

Cita com:
hdl:2117/391824
Document typeConference report
Defense date2023
PublisherComputer Vision Foundation
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The advances in automatic sign language translation (SLT) to spoken languages have been mostly benchmarked with datasets of limited size and restricted domains. Our work advances the state of the art by providing the first baseline results on How2Sign, a large and broad dataset. We train a Transformer over I3D video features, using the reduced BLEU as a reference metric for validation, instead of the widely used BLEU score. We report a result of 8.03 on the BLEU score, and publish the first open-source implementation of its kind to promote further advances.
CitationTarrés, L. [et al.]. Sign language translation from instructional videos. A: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. "CVPR 2023 Women in Computer Vision Workshop: June 18-22, 2023, Vancouver, Canada". Computer Vision Foundation, 2023, p. 5624-5634.
Publisher versionhttps://openaccess.thecvf.com/content/CVPR2023W/WiCV/html/Tarres_Sign_Language_Translation_from_Instructional_Videos_CVPRW_2023_paper.html
Other identifiershttps://arxiv.org/abs/2304.06371
Collections
- Doctorat en Arquitectura de Computadors - Ponències/Comunicacions de congressos [349]
- Doctorat en Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [293]
- Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [2.052]
- Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.457]
Files | Description | Size | Format | View |
---|---|---|---|---|
Tarres_Sign_Lan ... ideos_CVPRW_2023_paper.pdf | 1,798Mb | View/Open |