A GPU parallel randomized CUR compression method for the Method of Moments
View/Open
Journal Pre-proof.pdf (920,5Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/391415
Document typeArticle
Defense date2023-06-01
Rights accessRestricted access - publisher's policy
(embargoed until 2025-02-01)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectSISTEMAS RADIANTES X-WAVE INTEGRADAS DE COMUNICACIONES Y SENSORIZACION (AEI-PID2019-107885GB-C31)
RESONADORES Y FILTROS ELECTRO-ACUSTICOS PARA APLICACIONES 5G SUB-6 GHZ (AEI-PID2020-118410RB-C21)
RESONADORES Y FILTROS ELECTRO-ACUSTICOS PARA APLICACIONES 5G SUB-6 GHZ (AEI-PID2020-118410RB-C21)
Abstract
In this work, we propose a GPU parallel implementation of the randomized CUR (or Pseudo Skeleton) Approximation to compress the -matrices of linear systems that arise in the discretization of integral equations modeling electromagnetic scattering problems. This compression method is highly parallelizable, in contrast with other similar methods such as the Adaptive Cross Approximation. It involves dense linear algebra computations that can be efficiently implemented on a GPU device. Besides, a stochastic convergence criterion is introduced to minimize the communication between the host and the device. Testing the code with standard cases shows the efficiency and accuracy of the method.
CitationLopez, H. [et al.]. A GPU parallel randomized CUR compression method for the Method of Moments. "Computer physics communications", 1 Juny 2023, vol. 287, núm. Article 108696.
ISSN0010-4655
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0010465523000413
Files | Description | Size | Format | View |
---|---|---|---|---|
Journal Pre-proof.pdf | 920,5Kb | Restricted access |