Show simple item record

dc.contributor.authorAzizian, Pooya
dc.contributor.authorCasals Terré, Jasmina
dc.contributor.authorRicart Campos, Jordi
dc.contributor.authorCabot, Joan Marc
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Mecànica, Fluids i Aeronàutica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
dc.date.accessioned2023-07-17T08:16:22Z
dc.date.available2023-07-17T08:16:22Z
dc.date.issued2023-01-01
dc.identifier.citationAzizian, P. [et al.]. Capillary-driven microfluidics: impacts of 3D manufacturing on bioanalytical devices. "The Analyst", 1 Gener 2023, vol. 148, núm. 12, p. 2657-2675.
dc.identifier.issn1364-5528
dc.identifier.urihttp://hdl.handle.net/2117/391002
dc.description.abstractOver decades, decentralized diagnostics continues to move towards rapid and cost-effective testing at the point-of-care (POC). Although microfluidics has become a key enabling technology for POC testing, the need for robust peripheral equipment has been a key limiting factor in reaching an ideal device. Manufacturing technologies are now reaching a level of maturity that allows the definition of 3D features down to the sub-millimeter scale. Employing three-dimensional (3D) features and surface chemistry allows the possibility to pre-program sophisticated control of the capillary flow avoiding bulky peripheral equipment. By designing a sequence of steps, like elution of reagents, washing, mixing, and sensing, capillary valves have become a powerful tool for POC applications. These valves use capillary force to stop and then release flows within pre-programmed capillary circuits without any moving part. Without their 3D structure, the feasibility of creating pre-programmed bioanalytical devices would be nearly impossible. Besides, the advent of smart materials and their variety of surface properties permitted the unprecedented ability to fabricate reliable flow control with a range of capillary driving forces. The classification of such capillary elements is presented in two functional steps – stop and actuation. This review includes the advances in 3D microfabrication, design, and surface chemistry for manufacturing bioanalytical devices. These developments are critically reviewed, focusing on the process and considering phenomena such as timing, reproducibility, unwanted diffusion, and cross-contaminations.
dc.description.sponsorshipThis project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no. 813863
dc.format.extent19 p.
dc.language.isoeng
dc.publisherRoyal Society of Chemistry (RSC)
dc.rightsAttribution-NonCommercial 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica
dc.subject.lcshMicrofluidics
dc.subject.lcshThree-dimensional printing
dc.subject.lcshMicrofabrication
dc.titleCapillary-driven microfluidics: impacts of 3D manufacturing on bioanalytical devices
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. CATMech - Centre Avançat de Tecnologies Mecàniques
dc.identifier.doi10.1039/d3an00115f
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://pubs.rsc.org/en/content/articlelanding/2023/AN/D3AN00115F
dc.rights.accessOpen Access
local.identifier.drac36638948
dc.description.versionPostprint (published version)
local.citation.authorAzizian, P.; Casals-Terré, J.; Ricart, J.; Cabot, J.
local.citation.publicationNameThe Analyst
local.citation.volume148
local.citation.number12
local.citation.startingPage2657
local.citation.endingPage2675


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record