Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.823 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of the cardiorespiratory pattern of patients undergoing weaning using artificial intelligence

Thumbnail
View/Open
ijerph-20-04430-v2.pdf (2,461Mb)
 
10.3390/ijerph20054430
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/389716

Show full item record
Pinto, Jorge
Gonzalez Acevedo, Hernando
Arizmendi Pereira, Carlos Julio
González Acuña, Hernan
Muñoz Maldonado, Yecid Alfonso
Giraldo Giraldo, BeatrizMés informacióMés informacióMés informació
Document typeArticle
Defense date2023-03-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
The optimal extubating moment is still a challenge in clinical practice. Respiratory pattern variability analysis in patients assisted through mechanical ventilation to identify this optimal moment could contribute to this process. This work proposes the analysis of this variability using several time series obtained from the respiratory flow and electrocardiogram signals, applying techniques based on artificial intelligence. 154 patients undergoing the extubating process were classified in three groups: successful group, patients who failed during weaning process, and patients who after extubating failed before 48 hours and need to reintubated. Power Spectral Density and time-frequency domain analysis were applied, computing Discrete Wavelet Transform. A new Q index was proposed to determine the most relevant parameters and the best decomposition level to discriminate between groups. Forward selection and bidirectional techniques were implemented to reduce dimensionality. Linear Discriminant Analysis and Neural Networks methods were implemented to classify these patients. The best results in terms of accuracy were, 84.61 ± 3.1% for successful versus failure groups, 86.90 ± 1.0% for successful versus reintubated groups, and 91.62 ± 4.9% comparing the failure and reintubated groups. Parameters related to Q index and Neural Networks classification presented the best performance in the classification of these patients.
CitationPinto, J. [et al.]. Analysis of the cardiorespiratory pattern of patients undergoing weaning using artificial intelligence. "International journal of environmental research and public health", 1 Març 2023, vol. 20, núm. 5; article 4430. 
URIhttp://hdl.handle.net/2117/389716
DOI10.3390/ijerph20054430
ISSN1660-4601
Publisher versionhttps://www.mdpi.com/1660-4601/20/5/4430
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.527]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
ijerph-20-04430-v2.pdf2,461MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina