PyMCGPU-IR Monte Carlo code test for occupational dosimetry
View/Open
irpa2022-paper-victor-garcia-balcaza.pdf (664,4Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
irpa2022-paper-victor-garcia-balcaza.pdf (664,4Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/388712
Document typeArticle
Defense date2023-05-24
Rights accessRestricted access - publisher's policy
(embargoed until 2024-12)
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
PyMCGPU-IR is an innovative occupational dose monitoring tool for interventional radiology procedures. It reads the radiation data from the Radiation Dose Structured Report of the procedure and combines this information with the position of the monitored worker recorded using a 3D camera system. This information is used as an input file for the fast Monte Carlo radiation transport code MCGPU-IR in order to assess the organ doses, Hp(10) and Hp(0.07), as well as the effective dose. In this study, Hp(10) measurements of the first operator during an endovascular aortic aneurysm repair procedure and a coronary angiography using a ceiling suspended shield are compared to PyMCGPU-IR calculations. Differences in the two reported examples are found to be within 15%, which is considered as being very satisfactory. The study highlights the promising advantages of PyMCGPU-IR, although there are still several improvements that need to be implemented before its final clinical use.
CitationGarcia, V. [et al.]. PyMCGPU-IR Monte Carlo code test for occupational dosimetry. "Radiation protection dosimetry", 24 Maig 2023, vol. 199, núm. 8-9, p. 730-735.
ISSN0144-8420
Publisher versionhttps://academic.oup.com/rpd/article-abstract/199/8-9/730/7177437
Collections
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.429]
- Doctorat en Enginyeria Biomèdica - Articles de revista [112]
- INTE - Institut de Tècniques Energètiques - Articles de revista [286]
- Doctorat en Enginyeria Nuclear i de les Radiacions Ionitzants - Articles de revista [53]
- TecSalut - Grup de Recerca en Tecnologies de la Salut - Articles de revista [39]
Files | Description | Size | Format | View |
---|---|---|---|---|
irpa2022-paper-victor-garcia-balcaza.pdf | 664,4Kb | Restricted access | ||
irpa2022-paper-victor-garcia-balcaza.pdf | 664,4Kb | Restricted access |