Symbolic dynamics in the restricted elliptic isosceles three body problem
View/Open
Article (472,4Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/388214
Document typeArticle
Defense date2021-09-05
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectHamInstab - Instabilities and homoclinic phenomena in Hamiltonian systems (EC-H2020-757802)
DINAMICA ASOCIADA A CONEXIONES ENTRE OBJETOS INVARIANTES CON APLICACIONES A LA NEUROCIENCIA Y LA MECANICA (AEI-PGC2018-098676-B-I00)
DINAMICA ASOCIADA A CONEXIONES ENTRE OBJETOS INVARIANTES CON APLICACIONES A LA NEUROCIENCIA Y LA MECANICA (AEI-PGC2018-098676-B-I00)
Abstract
The restricted elliptic isosceles three body problem (REI3BP) models the motion of a massless body under the influence of the Newtonian gravitational force caused by two other bodies called the primaries. The primaries of masses m1 = m2 move along a degenerate Keplerian elliptic collision orbit (on a line) under their gravitational attraction, whereas the third, massless particle, moves on the plane perpendicular to their line of motion and passing through the center of mass of the primaries. By symmetry, the component of the angular momentum G of the massless particle along the direction of the line of the primaries is conserved.
We show the existence of symbolic dynamics in the REI3BP for large G by building a Smale horseshoe on a certain subset of the phase space. As a consequence we deduce that the REI3BP possesses oscillatory motions, namely orbits which leave every bounded region but return infinitely often to some fixed bounded region. The proof relies on the existence of transversal homoclinic connections associated to an invariant manifold at infinity. Since the distance between the stable and unstable manifolds of infinity is exponentially small, Melnikov theory does not apply.
CitationGuardia, M. [et al.]. Symbolic dynamics in the restricted elliptic isosceles three body problem. "Journal of differential equations", 5 Setembre 2021, vol. 294, p. 143-177.
ISSN0022-0396
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
GuardiaPSVJDE2021legal.pdf![]() | Article | 472,4Kb | Restricted access |