Show simple item record

dc.contributor.authorHuang, Dong
dc.contributor.authorGrifoll Colls, Manel
dc.contributor.authorSánchez Espigares, Josep Anton
dc.contributor.authorZheng, Pengjun
dc.contributor.authorFeng, Hongxiang
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Civil
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2023-06-02T10:51:13Z
dc.date.issued2022-11
dc.identifier.citationHuang, D. [et al.]. Hybrid approaches for container traffic forecasting in the context of anomalous events: the case of the Yangtze River Delta region in the COVID-19 pandemic. "Transport policy", Novembre 2022, vol. 128, p. 1-12.
dc.identifier.issn0967-070X
dc.identifier.urihttp://hdl.handle.net/2117/388189
dc.description.abstractThe COVID-19 pandemic had a significant impact on container transportation. Accurate forecasting of container throughput is critical for policymakers and port authorities, especially in the context of the anomalous events of the COVID-19 pandemic. In this paper, we firstly proposed hybrid models for univariate time series forecasting to enhance prediction accuracy while eliminating the nonlinearity and multivariate limitations. Next, we compared the forecasting accuracy of different models with various training dataset extensions and forecasting horizons. Finally, we analysed the impact of the COVID-19 pandemic on container throughput forecasting and container transportation. An empirical analysis of container throughputs in the Yangtze River Delta region was performed for illustration and verification purposes. Error metrics analysis suggests that SARIMA-LSTM2 and SARIMA-SVR2 (configuration 2) have the best performance compared to other models and they can better predict the container traffic in the context of anomalous events such as the COVID-19 pandemic. The results also reveal that, with an increase in the training dataset extensions, the accuracy of the models is improved, particularly in comparison with standard statistical models (i.e. SARIMA model). An accurate prediction can help strategic management and policymakers to better respond to the negative impact of the COVID-19 pandemic.
dc.format.extent12 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Nàutica::Navegació marítima::Transport marítim
dc.subject.lcshShipping
dc.subject.lcshCOVID-19 Pandemic, 2020-
dc.subject.lcshContainerization
dc.subject.otherCOVID-19 pandemic
dc.subject.otherYangtze River Delta multi-port region
dc.subject.otherHybrid model
dc.subject.otherMachine learning model
dc.subject.otherSARIMA model
dc.titleHybrid approaches for container traffic forecasting in the context of anomalous events: the case of the Yangtze River Delta region in the COVID-19 pandemic
dc.typeArticle
dc.subject.lemacTransport marítim
dc.subject.lemacTransport multimodal
dc.subject.lemacPandèmia de COVID-19, 2020-
dc.subject.lemacContenidors
dc.subject.lemacTransport de contenidors
dc.contributor.groupUniversitat Politècnica de Catalunya. BIT - Barcelona Innovative Transportation
dc.contributor.groupUniversitat Politècnica de Catalunya. ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials
dc.identifier.doi10.1016/j.tranpol.2022.08.019
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0967070X22002384
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac34232062
dc.description.versionPostprint (author's final draft)
dc.date.lift2024-11
local.citation.authorHuang, D.; Grifoll, M.; Sanchez, J.; Zheng, P.; Feng , H.
local.citation.publicationNameTransport policy
local.citation.volume128
local.citation.startingPage1
local.citation.endingPage12


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record