Hybrid approaches for container traffic forecasting in the context of anomalous events: the case of the Yangtze River Delta region in the COVID-19 pandemic
View/Open
paper_mg.docx (1,045Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
20220730Hybrid approaches for container forecasting in the context of anomalous events- the case of the Yangtze River Delta region in the COVID-19 pandemic.docx (1,049Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/388189
Document typeArticle
Defense date2022-11
Rights accessRestricted access - publisher's policy
(embargoed until 2024-11)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The COVID-19 pandemic had a significant impact on container transportation. Accurate forecasting of container throughput is critical for policymakers and port authorities, especially in the context of the anomalous events of the COVID-19 pandemic. In this paper, we firstly proposed hybrid models for univariate time series forecasting to enhance prediction accuracy while eliminating the nonlinearity and multivariate limitations. Next, we compared the forecasting accuracy of different models with various training dataset extensions and forecasting horizons. Finally, we analysed the impact of the COVID-19 pandemic on container throughput forecasting and container transportation. An empirical analysis of container throughputs in the Yangtze River Delta region was performed for illustration and verification purposes. Error metrics analysis suggests that SARIMA-LSTM2 and SARIMA-SVR2 (configuration 2) have the best performance compared to other models and they can better predict the container traffic in the context of anomalous events such as the COVID-19 pandemic. The results also reveal that, with an increase in the training dataset extensions, the accuracy of the models is improved, particularly in comparison with standard statistical models (i.e. SARIMA model). An accurate prediction can help strategic management and policymakers to better respond to the negative impact of the COVID-19 pandemic.
CitationHuang, D. [et al.]. Hybrid approaches for container traffic forecasting in the context of anomalous events: the case of the Yangtze River Delta region in the COVID-19 pandemic. "Transport policy", Novembre 2022, vol. 128, p. 1-12.
ISSN0967-070X
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0967070X22002384
Collections
- Departament d'Enginyeria Civil i Ambiental - Articles de revista [3.145]
- ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials - Articles de revista [127]
- Doctorat en Enginyeria Civil - Articles de revista [180]
- BIT - Barcelona Innovative Transportation - Articles de revista [146]
- Departament d'Estadística i Investigació Operativa - Articles de revista [729]
Files | Description | Size | Format | View |
---|---|---|---|---|
paper_mg.docx | 1,045Mb | Microsoft Word 2007 | Restricted access | |
20220730Hybrid ... the COVID-19 pandemic.docx | 1,049Mb | Microsoft Word 2007 | Restricted access |