The optimal exponent in the embedding into the Lebesgue spaces for functions with gradient in the Morrey space

View/Open
Cita com:
hdl:2117/388186
Document typeArticle
Defense date2021-03-26
PublisherElsevier
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
ProjectECUACIONES EN DERIVADAS PARCIALES: PROBLEMAS DE REACCION-DIFUSION, INTEGRO-DIFERENCIALES Y GEOMETRICOS (AEI-MTM2017-84214-C2-1-P)
ECUACIONES CON PERTURBACIONES DE POTENCIAS DEL LAPLACIANO (AEI-PID2019-110712GB-I00)
ECUACIONES CON PERTURBACIONES DE POTENCIAS DEL LAPLACIANO (AEI-PID2019-110712GB-I00)
Abstract
We study a natural question that, apparently, has not been well addressed in the literature. Given functions \upsilon with support in the unit ball B1 \subset \mathbb{R}n and with gradient in the Morrey space Mp,\lambda(B1), where 1 < p < \lambda < n, what is the largest range of exponents q for which necessarily \upsilon \in Lq(B1)? While David R. Adams proved in 1975 that this embedding holds for q \leq \lambda p/(\lambda − p), an article from 2011 claimed the embedding in the larger range q < np/(\lambda − p). Here we disprove this last statement by constructing a function that provides a counterexample for q > \lambda p/(\lambda−p). The function is basically a negative power of the distance to a set of Hausdorff dimension n − \lambda. When \lambda \notin \mathbb{Z}, this set is a fractal. We also make a detailed study of the radially symmetric case, a situation in which the exponent q can go up to np/(\lambda − p).
Description
© 2021 Elsevier Inc. All rights reserved.
CitationCabre, X.; Charro, F. The optimal exponent in the embedding into the Lebesgue spaces for functions with gradient in the Morrey space. "Advances in Mathematics", 26 Març 2021, vol. 380, núm. 107592, p. 1-36.
ISSN1090-2082
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
charro-morrey-JOUR-online.pdf | 571,4Kb | View/Open |