Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.085 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Teoria del Senyal i Comunicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biological brain age prediction using machine learning on structural neuroimaging data: multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex

Thumbnail
View/Open
elife-81067-v2.pdf (8,816Mb)
 
10.7554/eLife.81067
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/387009

Show full item record
Cumplido Mayoral, Irene
García Prat, Marina
Operto, Grégory
Falcón Falcón, Carles
Shekari, Mahnaz
Cacciaglia, Raffaele
Milà Alomà, Marta
Lorenzini, Luigi
Ingala, Silvia
Vilaplana Besler, VerónicaMés informacióMés informacióMés informació
Document typeArticle
Defense date2023-05-12
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjectINTELIGENCIA ARTIFICIAL INSESGADA Y EXPLICABLE PARA IMAGENES MEDICAS (AEI-PID2020-116907RB-I00)
Abstract
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD and OASIS. Brain-age delta was associated with abnormal amyloid-b, more advanced stages (AT) of AD pathology and APOE-e4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.
CitationCumplido, I. [et al.]. Biological brain age prediction using machine learning on structural neuroimaging data: multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex. "eLife", 12 Maig 2023, vol. 12, article e81067. 
URIhttp://hdl.handle.net/2117/387009
DOI10.7554/eLife.81067
ISSN2050-084X
Publisher versionhttps://elifesciences.org/articles/81067
Collections
  • Departament de Teoria del Senyal i Comunicacions - Articles de revista [2.644]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
elife-81067-v2.pdf8,816MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina