Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
62.312 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Herglotz principle and vakonomic dynamics

Thumbnail
View/Open
2106.02404.pdf (139,2Kb)
 
10.1007/978-3-030-80209-7_21
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/386956

Show full item record
Muñoz Lecanda, Miguel CarlosMés informacióMés informació
De León, Manuel
Lainz Valcázar, Manuel
Document typeConference lecture
Defense date2021-07-21
PublisherSpringer Nature
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In this paper we study vakonomic dynamics on contact systems with nonlinear constraints. In order to obtain the dynamics, we consider a space of admisible paths, which are the ones tangent to a given submanifold. Then, we find the critical points of the Herglotz action on this space of paths. This dynamics can be also obtained through an extended Lagrangian, including Lagrange multiplier terms. This theory has important applications in optimal control theory for Herglotz control problems, in which the cost function is given implicitly, through an ODE, instead of by a definite integral. Indeed, these control problems can be considered as particular cases of vakonomic contact systems, and we can use the Lagrangian theory of contact systems in order to understand their symmetries and dynamics.
Description
The final publication is available at https://link.springer.com/chapter/10.1007/978-3-030-80209-7_21#citeas
CitationMuñoz-Lecanda, M.C.; De León, M.; Lainz, M. The Herglotz principle and vakonomic dynamics. A: "Geometric science of information: 5th International Conference, GSI 2021, Paris, France, July 21-23, 2021: proceedings". Springer Nature, 2021, p. 183-190. ISBN 978-3-030-80208-0. DOI 10.1007/978-3-030-80209-7_21. 
URIhttp://hdl.handle.net/2117/386956
DOI10.1007/978-3-030-80209-7_21
ISBN978-3-030-80208-0
Publisher versionhttps://link.springer.com/book/10.1007/978-3-030-80209-7
Collections
  • GEOMVAP - Geometria de Varietats i Aplicacions - Ponències/Comunicacions de congressos [9]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2106.02404.pdf139,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina