Show simple item record

dc.contributor.authorVouros, George
dc.contributor.authorTranos, Theodore
dc.contributor.authorBlekas, Konstantinos
dc.contributor.authorSantipantakis, Georgios
dc.contributor.authorMelgosa Farrés, Marc
dc.contributor.authorPrats Menéndez, Xavier
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2023-05-02T11:21:20Z
dc.date.available2023-05-02T11:21:20Z
dc.date.issued2022
dc.identifier.citationVouros, G. [et al.]. Data-driven estimation of flights' hidden parameters. A: SESAR Innovation Days. "12th SESAR Innovation Days: Inspiring long-term research in the field of air traffic management: Budapest, Hungary: December 5-8, 2022". Single European Sky ATM Research (SESAR), 2022, p. 1-6.
dc.identifier.urihttp://hdl.handle.net/2117/386838
dc.description.abstractThis paper presents a data-driven methodology for the estimation of flights’ hidden parameters, combining mechanistic and AI/ML models. In the context of this methodology the paper studies several AI/ML methods and reports on evaluation results for estimating hidden parameters, in terms of mean absolute error. In addition to the estimation of hidden parameters themselves, this paper examines how these estimations affect the prediction of KPIs regarding the efficiency of flights using a mechanistic model. Results show the accuracy of the proposed methods and the benefits of the proposed methodology. Indeed, the results show significant advances of data-driven methods to estimate hidden parameters towards predicting KPIs.
dc.description.sponsorshipThis work has received funding from SESAR Joint Undertaking (JU) within SIMBAD project under grant agreement No 894241. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the SESAR JU members other than the Union
dc.format.extent6 p.
dc.language.isoeng
dc.publisherSingle European Sky ATM Research (SESAR)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Aeronàutica i espai
dc.subject.lcshAir traffic control
dc.subject.lcshPerformance standards
dc.subject.lcshOrganizational effectiveness
dc.subject.otherHidden parameters
dc.subject.otherData-driven estimation
dc.subject.otherKPIs
dc.subject.otherPrediction
dc.subject.otherAI/ML
dc.titleData-driven estimation of flights’ hidden parameters
dc.typeConference report
dc.contributor.groupUniversitat Politècnica de Catalunya. ICARUS - Intelligent Communications and Avionics for Robust Unmanned Aerial Systems
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sesarju.eu/sesarinnovationdays
dc.rights.accessOpen Access
local.identifier.drac35117159
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/894241/EU/Combining Simulation Models and Big Data Analytics for ATM Performance Analysis/SIMBAD
local.citation.authorVouros, G.; Tranos, T.; Blekas, K.; Santipantakis, G.; Melgosa, M.; Prats, X.
local.citation.contributorSESAR Innovation Days
local.citation.publicationName12th SESAR Innovation Days: Inspiring long-term research in the field of air traffic management: Budapest, Hungary: December 5-8, 2022
local.citation.startingPage1
local.citation.endingPage6


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record