Data-driven estimation of flights’ hidden parameters
Cita com:
hdl:2117/386838
Document typeConference report
Defense date2022
PublisherSingle European Sky ATM Research (SESAR)
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
This paper presents a data-driven methodology for the estimation of flights’ hidden parameters, combining mechanistic and AI/ML models. In the context of this methodology the paper studies several AI/ML methods and reports on evaluation results for estimating hidden parameters, in terms of mean absolute error. In addition to the estimation of hidden parameters themselves, this paper examines how these estimations affect the prediction of KPIs regarding the efficiency of flights using a mechanistic model. Results show the accuracy of the proposed methods and the benefits of the proposed methodology. Indeed, the results show significant advances of data-driven methods to estimate hidden parameters towards predicting KPIs.
CitationVouros, G. [et al.]. Data-driven estimation of flights' hidden parameters. A: SESAR Innovation Days. "12th SESAR Innovation Days: Inspiring long-term research in the field of air traffic management: Budapest, Hungary: December 5-8, 2022". Single European Sky ATM Research (SESAR), 2022, p. 1-6.
Publisher versionhttps://www.sesarju.eu/sesarinnovationdays
Files | Description | Size | Format | View |
---|---|---|---|---|
1670002505_fifsc_SIDs_2022_paper_54_final.pdf | Data-driven estimation of flights’ hidden parameters | 3,513Mb | View/Open |