dc.contributor.author | Caro Roca, Martí |
dc.contributor.author | Tabani, Hamid |
dc.contributor.author | Abella Ferrer, Jaume |
dc.contributor.author | Moll Echeto, Francisco de Borja |
dc.contributor.author | Morancho Llena, Enrique |
dc.contributor.author | Canal Corretger, Ramon |
dc.contributor.author | Altet Sanahujes, Josep |
dc.contributor.author | Calomarde Palomino, Antonio |
dc.contributor.author | Cazorla Almeida, Francisco Javier |
dc.contributor.author | Rubio Romano, Antonio |
dc.contributor.author | Fontova Muste, Pau |
dc.contributor.author | Fornt Mas, Jordi |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Enginyeria Electrònica |
dc.contributor.other | Barcelona Supercomputing Center |
dc.date.accessioned | 2023-04-20T09:02:44Z |
dc.date.available | 2025-04-05T00:29:23Z |
dc.date.issued | 2023-05 |
dc.identifier.citation | Caro, M. [et al.]. An automotive case study on the limits of approximation for object detection. "Journal of systems architecture", Maig 2023, vol. 138, article 102872, p. 1-14. |
dc.identifier.issn | 1383-7621 |
dc.identifier.other | https://arxiv.org/abs/2304.06327 |
dc.identifier.uri | http://hdl.handle.net/2117/386458 |
dc.description.abstract | The accuracy of camera-based object detection (CBOD) built upon deep learning is often evaluated against the real objects in frames only. However, such simplistic evaluation ignores the fact that many unimportant objects are small, distant, or background, and hence, their misdetections have less impact than those for closer, larger, and foreground objects in domains such as autonomous driving. Moreover, sporadic misdetections are irrelevant since confidence on detections is typically averaged across consecutive frames, and detection devices (e.g. cameras, LiDARs) are often redundant, thus providing fault tolerance. This paper exploits such intrinsic fault tolerance of the CBOD process, and assesses in an automotive case study to what extent CBOD can tolerate approximation coming from multiple sources such as lower precision arithmetic, approximate arithmetic units, and even random faults due to, for instance, low voltage operation. We show that the accuracy impact of those sources of approximation is within 1% of the baseline even when considering the three approximate domains simultaneously, and hence, multiple sources of approximation can be exploited to build highly efficient accelerators for CBOD in cars. |
dc.description.sponsorship | This work is partially funded by the DRAC project, which is co-financed by the European Union Regional Development Fund within the framework of the ERDF Operational Program of Catalonia 2014–2020 with a grant of 50% of total cost eligible. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant PID2019-107255GB. |
dc.format.extent | 14 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors |
dc.subject.lcsh | Embedded computer systems |
dc.subject.lcsh | Neural networks (Computer science) |
dc.subject.lcsh | Autonomous vehicles |
dc.subject.other | Energy efficiency |
dc.subject.other | Neural network application |
dc.subject.other | Autonomous driving |
dc.title | An automotive case study on the limits of approximation for object detection |
dc.type | Article |
dc.subject.lemac | Ordinadors immersos, Sistemes d' |
dc.subject.lemac | Xarxes neuronals (Informàtica) |
dc.subject.lemac | Vehicles autònoms |
dc.contributor.group | Universitat Politècnica de Catalunya. EFRICS - Efficient and Robust Integrated Circuits and Systems |
dc.contributor.group | Universitat Politècnica de Catalunya. PM - Programming Models |
dc.contributor.group | Universitat Politècnica de Catalunya. CRAAX - Centre de Recerca d'Arquitectures Avançades de Xarxes |
dc.identifier.doi | 10.1016/j.sysarc.2023.102872 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/pii/S1383762123000516 |
dc.rights.access | Open Access |
local.identifier.drac | 35704041 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107255GB-C21/ES/BSC - COMPUTACION DE ALTAS PRESTACIONES |
local.citation.author | Caro, M.; Tabani, H.; Abella, J.; Moll, F.; Morancho, E.; Canal, R.; Altet, J.; Calomarde, A.; Cazorla, F. J.; Rubio, A.; Fontova, P.; Fornt, J. |
local.citation.publicationName | Journal of systems architecture |
local.citation.volume | 138 |
local.citation.number | article 102872 |
local.citation.startingPage | 1 |
local.citation.endingPage | 14 |