Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.736 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A data science approach for spatiotemporal modelling of low and resident air pollution in Madrid (Spain): implications for epidemiological studies

Thumbnail
View/Open
2A data science approach for spatiotemporal modelling of low and resident.pdf (4,252Mb)
 
10.1016/j.compenvurbsys.2018.12.005
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/386407

Show full item record
Gómez Losada, Álvaro
Santos, Francisca M.
Gibert, KarinaMés informacióMés informacióMés informació
Magalhães Pires, José Carlos
Document typeArticle
Defense date2019-05-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Model developments to assess different air pollution exposures within cities are still a key challenge in environmental epidemiology. Background air pollution is a long-term resident and low-level concentration pollution difficult to quantify, and to which population is chronically exposed. In this study, hourly time series of four key air pollutants were analysed using Hidden Markov Models to estimate the exposure to background pollution in Madrid, from 2001 to 2017. Using these estimates, its spatial distribution was later analysed after combining the interpolation results of ordinary kriging and inverse distance weighting. The ratio of ambient to background pollution differs according to the pollutant studied but is estimated to be on average about six to one. This methodology is proposed not only to describe the temporal and spatial variability of this complex exposure, but also to be used as input in new modelling approaches of air pollution in urban areas.
Description
© 2019 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationGómez, Á. [et al.]. A data science approach for spatiotemporal modelling of low and resident air pollution in Madrid (Spain): implications for epidemiological studies. "Computers, environment and urban systems", 1 Maig 2019, vol. 75, p. 1-11. 
URIhttp://hdl.handle.net/2117/386407
DOI10.1016/j.compenvurbsys.2018.12.005
ISSN0198-9715
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0198971518304447
Collections
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Articles de revista [125]
  • Departament d'Estadística i Investigació Operativa - Articles de revista [782]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2A data science ... ng of low and resident.pdf4,252MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina