Show simple item record

dc.contributor.authorJullian Parra, Olivia
dc.contributor.authorOtero Calviño, Beatriz
dc.contributor.authorRodríguez Luna, Eva
dc.contributor.authorGutiérrez Escobar, Norma
dc.contributor.authorAntona Pizà, Héctor
dc.contributor.authorCanal Corretger, Ramon
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2023-04-06T11:40:30Z
dc.date.available2023-04-06T11:40:30Z
dc.date.issued2023-02-04
dc.identifier.citationJullian, O. [et al.]. Deep-learning based detection for cyber-attacks in IoT networks: A distributed attack detection framework. "Journal of network and systems management", 4 Febrer 2023, vol. 31, article 33.
dc.identifier.issn1573-7705
dc.identifier.urihttp://hdl.handle.net/2117/386042
dc.description.abstractThe widespread use of smart devices and the numerous security weaknesses of networks has dramatically increased the number of cyber-attacks in the internet of things (IoT). Detecting and classifying malicious traffic is key to ensure the security of those systems. This paper implements a distributed framework based on deep learning (DL) to prevent many different sources of vulnerability at once, all under the same protection system. Two different DL models are evaluated: feed forward neural network and long short-term memory. The models are evaluated with two different datasets (i.e.NSL-KDD and BoT-IoT) in terms of performance and identification of different kinds of attacks. The results demonstrate that the proposed distributed framework is effective in the detection of several types of cyber-attacks, achieving an accuracy up to 99.95% across the different setups.
dc.description.sponsorshipOpen Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is partially supported by the Spanish Ministry of Science and Innovation under contract PID2021-124463OB-IOO, by the Generalitat de Catalunya under grants 2017SGR962, 2021SGR00326, and by the DRAC (IU16-011591), the HORIZON Vitamin-V (101093062) and the HORIZON-AG PHOENI2X (101070586) projects.
dc.format.extent24 p.
dc.language.isoeng
dc.publisherSpringer Nature
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Seguretat informàtica
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subject.lcshDeep learning
dc.subject.lcshInternet of things
dc.subject.lcshInternet -- Security measures
dc.subject.otherAttack detection
dc.subject.otherCyber-security
dc.subject.otherDistributed framework
dc.subject.otherFeed forward neural network
dc.subject.otherLong short-term memory
dc.titleDeep-learning based detection for cyber-attacks in IoT networks: A distributed attack detection framework
dc.typeArticle
dc.subject.lemacAprenentatge profund
dc.subject.lemacInternet de les coses
dc.subject.lemacInternet -- Mesures de seguretat
dc.contributor.groupUniversitat Politècnica de Catalunya. CRAAX - Centre de Recerca d'Arquitectures Avançades de Xarxes
dc.identifier.doi10.1007/s10922-023-09722-7
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.1007/s10922-023-09722-7
dc.rights.accessOpen Access
local.identifier.drac35171545
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/PLAN ESTATAL DE INVESTIGACIÓN CIENTÍFICA Y TÉCNICA Y DE INNOVACIÓN 2017-2020/PID2021-124463OB-I00/ES/Gestión inteligente del cloud continuum: Desarrollo de las funcionalidades clave de un SO/
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/HE/101093062/EU/Virtual Environment and Tool-boxing for Trustworthy Development of RISC-V based Cloud Services/Vitamin-V
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/HE/101070586/EU/A EUROPEAN CYBER RESILIENCE FRAMEWORK WITH ARTIFICIAL INTELLIGENCE -ASSISTED ORCHESTRATION & AUTOMATION FOR BUSINESS CONTINUITY, INCIDENT RESPONSE & INFORMATION EXCHANGE/PHOENI2X
local.citation.authorJullian, O.; Otero, B.; Rodriguez, E.; Gutierrez, N.; Antona, H.; Canal, R.
local.citation.publicationNameJournal of network and systems management
local.citation.volume31
local.citation.numberarticle 33


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record