dc.contributor.author | Jullian Parra, Olivia |
dc.contributor.author | Otero Calviño, Beatriz |
dc.contributor.author | Rodríguez Luna, Eva |
dc.contributor.author | Gutiérrez Escobar, Norma |
dc.contributor.author | Antona Pizà, Héctor |
dc.contributor.author | Canal Corretger, Ramon |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.date.accessioned | 2023-04-06T11:40:30Z |
dc.date.available | 2023-04-06T11:40:30Z |
dc.date.issued | 2023-02-04 |
dc.identifier.citation | Jullian, O. [et al.]. Deep-learning based detection for cyber-attacks in IoT networks: A distributed attack detection framework. "Journal of network and systems management", 4 Febrer 2023, vol. 31, article 33. |
dc.identifier.issn | 1573-7705 |
dc.identifier.uri | http://hdl.handle.net/2117/386042 |
dc.description.abstract | The widespread use of smart devices and the numerous security weaknesses of networks has dramatically increased the number of cyber-attacks in the internet of things (IoT). Detecting and classifying malicious traffic is key to ensure the security of those systems. This paper implements a distributed framework based on deep learning (DL) to prevent many different sources of vulnerability at once, all under the same protection system. Two different DL models are evaluated: feed forward neural network and long short-term memory. The models are evaluated with two different datasets (i.e.NSL-KDD and BoT-IoT) in terms of performance and identification of different kinds of attacks. The results demonstrate that the proposed distributed framework is effective in the detection of several types of cyber-attacks, achieving an accuracy up to 99.95% across the different setups. |
dc.description.sponsorship | Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature. This work is partially supported by the Spanish Ministry of Science and Innovation under contract PID2021-124463OB-IOO, by the Generalitat de Catalunya under grants 2017SGR962, 2021SGR00326, and by the DRAC (IU16-011591), the HORIZON Vitamin-V (101093062) and the HORIZON-AG PHOENI2X (101070586) projects. |
dc.format.extent | 24 p. |
dc.language.iso | eng |
dc.publisher | Springer Nature |
dc.rights | Attribution 4.0 International |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Seguretat informàtica |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors |
dc.subject.lcsh | Deep learning |
dc.subject.lcsh | Internet of things |
dc.subject.lcsh | Internet -- Security measures |
dc.subject.other | Attack detection |
dc.subject.other | Cyber-security |
dc.subject.other | Distributed framework |
dc.subject.other | Feed forward neural network |
dc.subject.other | Long short-term memory |
dc.title | Deep-learning based detection for cyber-attacks in IoT networks: A distributed attack detection framework |
dc.type | Article |
dc.subject.lemac | Aprenentatge profund |
dc.subject.lemac | Internet de les coses |
dc.subject.lemac | Internet -- Mesures de seguretat |
dc.contributor.group | Universitat Politècnica de Catalunya. CRAAX - Centre de Recerca d'Arquitectures Avançades de Xarxes |
dc.identifier.doi | 10.1007/s10922-023-09722-7 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://link.springer.com/article/10.1007/s10922-023-09722-7 |
dc.rights.access | Open Access |
local.identifier.drac | 35171545 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/PLAN ESTATAL DE INVESTIGACIÓN CIENTÍFICA Y TÉCNICA Y DE INNOVACIÓN 2017-2020/PID2021-124463OB-I00/ES/Gestión inteligente del cloud continuum: Desarrollo de las funcionalidades clave de un SO/ |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/HE/101093062/EU/Virtual Environment and Tool-boxing for Trustworthy Development of RISC-V based Cloud Services/Vitamin-V |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/HE/101070586/EU/A EUROPEAN CYBER RESILIENCE FRAMEWORK WITH ARTIFICIAL INTELLIGENCE -ASSISTED ORCHESTRATION & AUTOMATION FOR BUSINESS CONTINUITY, INCIDENT RESPONSE & INFORMATION EXCHANGE/PHOENI2X |
local.citation.author | Jullian, O.; Otero, B.; Rodriguez, E.; Gutierrez, N.; Antona, H.; Canal, R. |
local.citation.publicationName | Journal of network and systems management |
local.citation.volume | 31 |
local.citation.number | article 33 |