Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.328 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GNOM - Grup d'Optimització Numèrica i Modelització
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GNOM - Grup d'Optimització Numèrica i Modelització
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An optimization-based decomposition heuristic for the microaggregation problem

Thumbnail
View/Open
lncs2022.pdf (345,2Kb)
 
10.1007/978-3-031-13945-1_1
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/385663

Show full item record
Castro Pérez, JordiMés informacióMés informacióMés informació
Gentile, Claudio
Spagnolo Arrizabalaga, Enrique
Document typeConference report
Defense date2022
PublisherSpringer
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectMODELIZACION Y OPTIMIZACION DE PROBLEMAS ESTRUCTURADOS DE GRAN ESCALA Y APLICACIONES (AEI-RTI2018-097580-B-I00)
Abstract
Given a set of points, the microaggregation problem aims to find a clustering with a minimum sum of squared errors (SSE), where the cardinality of each cluster is greater than or equal to k. Points in the cluster are replaced by the cluster centroid, thus satisfying k-anonymity. Microaggregation is considered one of the most effective techniques for numerical microdata protection. Traditionally, non-optimal solutions to the microaggregation problem are obtained by heuristic approaches. Recently, the authors of this paper presented a mixed integer linear optimization (MILO) approach based on column generation for computing tight solutions and lower bounds to the microaggregation problem. However, MILO can be computationally expensive for large datasets. In this work we present a new heuristic that combines three blocks: (1) a decomposition of the dataset into subsets, (2) the MILO column generation algorithm applied to each dataset in order to obtain a valid microaggregation, and (3) a local search improvement algorithm to get the final clustering. Preliminary computational results show that this approach was able to provide (and even improve upon) some of the best solutions (i.e., of smallest SSE) reported in the literature for the Tarragona and Census datasets, and k¿{3,5,10} .
CitationCastro, J.; Gentile, C.; Spagnolo, E. An optimization-based decomposition heuristic for the microaggregation problem. A: Privacy in Statistical Databases. "Privacy in statistical databases: International Conference, PSD 2022, Paris, France, September 21-23, 2022, proceedings". Berlín: Springer, 2022, p. 3-14. ISBN 978-3-031-13945-1. DOI 10.1007/978-3-031-13945-1_1. 
URIhttp://hdl.handle.net/2117/385663
DOI10.1007/978-3-031-13945-1_1
ISBN978-3-031-13945-1
Publisher versionhttps://link.springer.com/book/10.1007/978-3-031-13945-1
Other identifiershttp://www-eio.upc.edu/~jcastro/publications/papers/lncs2022.pdf
Collections
  • GNOM - Grup d'Optimització Numèrica i Modelització - Ponències/Comunicacions de congressos [49]
  • Departament d'Estadística i Investigació Operativa - Ponències/Comunicacions de congressos [262]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
lncs2022.pdf345,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina