Combining high-order metric interpolation and geometry implicitization for curved r -adaption
View/Open
2303.11979.pdf (9,303Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/385305
Document typeArticle
Defense date2023
PublisherElsevier
Rights accessRestricted access - publisher's policy
(embargoed until 2025-01-20)
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
We detail how to use Newton’s method for distortion-based curved
-adaption to a discrete high-order metric field while matching a target geometry. Specifically, we combine two terms: a distortion measuring the deviation from the target metric; and a penalty term measuring the deviation from the target boundary. For this combination, we consider four ingredients. First, to represent the metric field, we detail a log-Euclidean high-order metric interpolation on a curved (straight-edged) mesh. Second, for this metric interpolation, we detail the first and second derivatives in physical coordinates. Third, to represent the domain boundaries, we propose an implicit representation for 2D and 3D NURBS models. Fourth, for this implicit representation, we obtain the first and second derivatives. The derivatives of the metric interpolation and the implicit representation allow minimizing the objective function with Newton’s method. For this second-order minimization, the resulting meshes simultaneously match the curved features of the target metric and boundary. Matching the metric and the geometry using second-order optimization is an unprecedented capability in curved (straight-edged)
-adaption. This capability will be critical in global and cavity-based curved (straight-edged) high-order mesh adaption.
CitationAparicio Estrems, G.; Gargallo Peiró, A.; Roca, X. Combining high-order metric interpolation and geometry implicitization for curved r -adaption. Computer-Aided Design, 2023, vol. 157, 103478.
ISSN0010-4485
Other identifiershttps://arxiv.org/pdf/2303.11979.pdf
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
2303.11979.pdf | 9,303Mb | Restricted access |