Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.843 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A survey of machine and deep learning methods for privacy protection in the Internet of things

Thumbnail
View/Open
Sensors_2023.pdf (671,7Kb)
 
10.3390/s23031252
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/385085

Show full item record
Rodríguez Luna, EvaMés informacióMés informacióMés informació
Otero Calviño, BeatrizMés informacióMés informacióMés informació
Canal Corretger, RamonMés informacióMés informacióMés informació
Document typeArticle
Defense date2023-01-21
PublisherMultidisciplinary Digital Publishing Institute (MDPI)
Rights accessOpen Access
Attribution 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution 4.0 International
ProjectPHOENI2X - A EUROPEAN CYBER RESILIENCE FRAMEWORK WITH ARTIFICIAL INTELLIGENCE -ASSISTED ORCHESTRATION & AUTOMATION FOR BUSINESS CONTINUITY, INCIDENT RESPONSE & INFORMATION EXCHANGE (EC-HE-101070586)
Vitamin-V - Virtual Environment and Tool-boxing for Trustworthy Development of RISC-V based Cloud Services (EC-HE-101093062)
Abstract
Recent advances in hardware and information technology have accelerated the proliferation of smart and interconnected devices facilitating the rapid development of the Internet of Things (IoT). IoT applications and services are widely adopted in environments such as smart cities, smart industry, autonomous vehicles, and eHealth. As such, IoT devices are ubiquitously connected, transferring sensitive and personal data without requiring human interaction. Consequently, it is crucial to preserve data privacy. This paper presents a comprehensive survey of recent Machine Learning (ML)- and Deep Learning (DL)-based solutions for privacy in IoT. First, we present an in depth analysis of current privacy threats and attacks. Then, for each ML architecture proposed, we present the implementations, details, and the published results. Finally, we identify the most effective solutions for the different threats and attacks.
CitationRodriguez, E.; Otero, B.; Canal, R. A survey of machine and deep learning methods for privacy protection in the Internet of things. "Sensors (Basel, Switzerland)", 21 Gener 2023, vol. 23, núm. 3, article 1252, p. 1-24. 
URIhttp://hdl.handle.net/2117/385085
DOI10.3390/s23031252
ISSN1424-8220
Publisher versionhttps://www.mdpi.com/1424-8220/23/3/1252
Collections
  • Departament d'Arquitectura de Computadors - Articles de revista [1.137]
  • CRAAX - Centre de Recerca d'Arquitectures Avançades de Xarxes - Articles de revista [50]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Sensors_2023.pdf671,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina