Show simple item record

dc.contributor.authorCoquinot, Baptiste
dc.contributor.authorMir Garcia, Pau
dc.contributor.authorMiranda Galcerán, Eva
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Física Computacional i Aplicada
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2023-03-07T11:43:35Z
dc.date.available2023-03-07T11:43:35Z
dc.date.issued2023-04
dc.identifier.citationCoquinot, B.; Mir, P.; Miranda, E. Singular cotangent models in fluids with dissipation. "Physica. D, Nonlinear phenomena", Abril 2023, vol. 446, núm. article 133655.
dc.identifier.issn0167-2789
dc.identifier.urihttp://hdl.handle.net/2117/384652
dc.description.abstractIn this article we analyze several mathematical models with singularities where the classical cotangent model is replaced by a -cotangent model. We provide physical interpretations of the singular symplectic geometry underlying in -cotangent bundles featuring two models: the canonical (or non-twisted) model and the twisted one. The canonical one models systems on manifolds with boundary and the twisted one represents Hamiltonian systems with a singularity on the fiber. The twisted cotangent model includes (for linear potentials) the case of fluids with dissipation. We prove (non)-existence of cotangent lift dynamics and show the existence of an infinite number of escape orbits in this model. We also discuss more general physical interpretations of the twisted and non-twisted -symplectic models. Twisted -symplectic models yield in a natural way escape orbits that go to the critical set. Under compactness assumptions those escape orbits are continued as singular periodic orbits in the sense of Miranda and Oms (2021) and Miranda (2020). These models offer a Hamiltonian formulation for systems which are dissipative, extending the horizons of Hamiltonian dynamics and opening a new approach to study non-conservative systems.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshSymplectic manifolds
dc.subject.lcshGeometry, Algebraic
dc.subject.otherB-symplectic geometry
dc.subject.otherFluids with dissipation
dc.subject.otherManifold with boundary
dc.subject.otherCotangent models
dc.subject.otherTwisted cotangent models
dc.subject.otherEscape orbits
dc.titleSingular cotangent models in fluids with dissipation
dc.typeArticle
dc.subject.lemacVarietats simplèctiques
dc.subject.lemacGeometria algebraica
dc.contributor.groupUniversitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
dc.identifier.doi10.1016/j.physd.2023.133655
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S016727892300009X
dc.rights.accessOpen Access
local.identifier.drac35097295
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-103849GB-I00/ES/GEOMETRIA, ALGEBRA, TOPOLOGIA Y APLICACIONES MULTIDISCIPLINARES/
local.citation.authorCoquinot, B.; Mir, P.; Miranda, E.
local.citation.publicationNamePhysica. D, Nonlinear phenomena
local.citation.volume446
local.citation.numberarticle 133655


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record