Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
75.924 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-View & Multi-Vendor Ventricular Segmentation

Thumbnail
View/Open
TFM_CarlesGarciaCabrera.pdf (4,142Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/383822

Show full item record
Garcia Cabrera, Carles
Tutor / directorGiró Nieto, XavierMés informacióMés informació; Mcguinness, Kevin
CovenanteeDublin City University
Document typeMaster thesis
Date2022-05-23
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Cardiac MRI segmentation is a clinically interesting field that can accelerate and improve diagnostics. Targeting the capability of models towards better generalizing in unseen subsets of data that can better represent minority cohorts, greatly enhancing the lives of multiple people, cheapening the diagnostics, and making current models more resilient to unseen pathologies. In this project, our aim was to study how different architectures behave in a multiview multivendor multipathology scenario with respect to these generalization capacities and explore how postprocessing can improve the results. In addition, we also assess the computational cost that these models need to ensure that they are valid for clinical products and machines that can be reached at any clinical center.
SubjectsNeural networks (Computer science), Machine learning, Imaging systems in medicine, Image segmentation, Xarxes neuronals (Informàtica), Aprenentatge automàtic, Imatgeria mèdica, Imatges--Segmentació
DegreeMÀSTER UNIVERSITARI EN TECNOLOGIES AVANÇADES DE TELECOMUNICACIÓ (Pla 2019)
URIhttp://hdl.handle.net/2117/383822
Collections
  • Màsters oficials - Master's degree in Advanced Telecommunication Technologies (MATT) [205]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TFM_CarlesGarciaCabrera.pdf4,142MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina