Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.660 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-time leak diagnosis in water distribution systems based on a bank of observers and a genetic algorithm

Thumbnail
View/Open
Real-Time Leak Diagnosis in Water Distribution Systems Based on a Bank of Observers and a Genetic Algorithm.pdf (4,005Mb)
Share:
 
 
10.3390/w14203289
 
  View Usage Statistics
Cita com:
hdl:2117/383722

Show full item record
Navarro Díaz, Adrián
Delgado-Aguiñaga, J.A.
Puig Cayuela, VicençMés informacióMés informacióMés informació
Santos Ruiz, Ildeberto de los
Document typeArticle
Defense date2022-10-18
Rights accessOpen Access
Attribution 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 4.0 International
Abstract
The main contribution of this paper is to present a novel solution for the leak diagnosis problem in branched pipeline systems considering the availability of pressure head and flow rate sensors on the upstream (unobstructed) side and the downstream (constricted) side. This approach is based on a bank of Kalman filters as state observers designed on the basis of the classical water hammer equations and a related genetic algorithm (GA) which includes a fitness function based on an integral error that helps obtaining a good estimation despite the presence of noise. For solving the leak diagnosis problem, three stages are considered: (a) the leak detection is performed through a mass balance; (b) the region where the leak is occurring is identified by implementing a reduced bank of Kalman filters which localize the leak by sweeping all regions of the branching pipeline through a GA that reduces the computational effort; (c) the leak position is computed through an algebraic equation derived from the water hammer equations in steady-state. To assess this methodology, experimental results are presented by using a test bed built at the Tuxtla Gutiérrez Institute of Technology, Tecnológico Nacional de México (TecNM). The obtained results are then compared with those obtained using a classic extended Kalman filter which is widely used in solving leak diagnosis problems and it is highlighted that the GA approach outperforms the EKF in two cases whereas the EKF is better in one case.
CitationNavarro, A. [et al.]. Real-time leak diagnosis in water distribution systems based on a bank of observers and a genetic algorithm. "Water (Switzerland)", 18 Octubre 2022, vol. 14, núm. 20, article 3289, p. 1-20. 
URIhttp://hdl.handle.net/2117/383722
DOI10.3390/w14203289
ISSN2073-4441
Publisher versionhttps://www.mdpi.com/2073-4441/14/20/3289
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.276]
  • SAC - Sistemes Avançats de Control - Articles de revista [461]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Real-Time Leak ... nd a Genetic Algorithm.pdf4,005MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina