A pruning tool for the multi-objective optimization of autonomous electrification systems
View/Open
CIO2022_Ponsich_et_al_final.pdf (90,00Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/383719
Document typeConference report
Defense date2022
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Despite global progresses worldwide, many people living in rural areas still have no electricity. Autonomous generation systems based on renewable energy and microgrid distribution represent a viable alternative, but their design is complex. In a recent work, the design of electrification systems is tackled through a multi-objective optimization (MO) approach that simultaneously minimizes the system cost and maximizes the energy and power supplied to consumers. However, hundreds of non-dominated solutions may result from this MO process, hindering the subsequent task of decision-makers confused by too many alternative configurations. In this framework, this work proposes a computational tool based on e-dominance and cluster analysis to prune the set of non-dominated solutions to a manageable number. The numerical experiments highlight that, regardless the size of the community to be electrified, the proposed tool successfully determines a reduced number of diverse trade-off alternatives, among which decisionmakers are able to comprehensively select their preferred option.
CitationPonsich, A. [et al.]. A pruning tool for the multi-objective optimization of autonomous electrification systems. A: International Conference on Industrial Engineering and Industrial Management / Congreso de Ingeniería de Organización. "Proceedings del Congreso de Ingeniería de la Organización 2022". 2022, p. 1-5.
Publisher versionhttps://www.springer.com/series/15362
Files | Description | Size | Format | View |
---|---|---|---|---|
CIO2022_Ponsich_et_al_final.pdf![]() | 90,00Kb | Restricted access |