Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.660 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Energy efficiency of training neural network architectures: an empirical study

Thumbnail
View/Open
Xu et al.pdf (407,4Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/383493

Show full item record
Xu, Yinlena
Martínez Fernández, Silverio JuanMés informacióMés informacióMés informació
Martínez Martínez, Matías-SebastiánMés informació
Franch Gutiérrez, JavierMés informacióMés informacióMés informació
Document typeConference report
Defense date2023
PublisherUniversity Of Hawaii
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
ProjectDESARROLLO, OPERATIVA Y GOBERNANZA DE DATOS PARA SISTEMAS SOFTWARE BASADOS EN APRENDIZAJE AUTOMATICO (AEI-PID2020-117191RB-I00)
Abstract
The evaluation of Deep Learning (DL) models has traditionally focused on criteria such as accuracy, F1 score, and related measures. The increasing availability of high computational power environments allows the creation of deeper and more complex models. However, the computations needed to train such models entail a large carbon footprint. In this work, we study the relations between DL model architectures and their environmental impact in terms of energy consumed and CO2 emissions produced during training by means of an empirical study using Deep Convolutional Neural Networks. Concretely, we study: (i) the impact of the architecture and the location where the computations are hosted on the energy consumption and emissions produced; (ii) the trade-off between accuracy and energy efficiency; and (iii) the difference on the method of measurement of the energy consumed using software-based and hardware-based tools.
CitationXu, Y. [et al.]. Energy efficiency of training neural network architectures: an empirical study. A: Hawaii International Conference on System Sciences. "Proceedings of the 56th Annual Hawaii International Conference on System Sciences: January 3-6, 2023, Hyatt Regency Maui". Honolulu, HI: University Of Hawaii, 2023, p. 781-790. ISBN 978-0-9981331-6-4. 
URIhttp://hdl.handle.net/2117/383493
ISBN978-0-9981331-6-4
Publisher versionhttps://hdl.handle.net/10125/102727
Collections
  • Departament d'Enginyeria de Serveis i Sistemes d'Informació - Ponències/Comunicacions de congressos [502]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Xu et al.pdf407,4KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina