Show simple item record

dc.contributor.authorBall, Simeon Michael
dc.contributor.authorGamboa Jimenez, Gonzalo
dc.contributor.authorLavrauw, Michel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2023-02-14T16:21:10Z
dc.date.available2023-02-14T16:21:10Z
dc.date.issued2022
dc.identifier.citationBall, S.; Gamboa, G.; Lavrauw, M. On additive MDS codes over small fields. "Advances in mathematics of communications", Agost 2023, vol. 17, núm. 4, p. 828-844.
dc.identifier.issn1930-5338
dc.identifier.urihttp://hdl.handle.net/2117/383024
dc.description.abstractLet $ C $ be a $ (n,q^{2k},n-k+1)_{q^2} $ additive MDS code which is linear over $ {\mathbb F}_q $. We prove that if $ n \geq q+k $ and $ k+1 $ of the projections of $ C $ are linear over $ {\mathbb F}_{q^2} $ then $ C $ is linear over $ {\mathbb F}_{q^2} $. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over $ {\mathbb F}_q $ for $ q \in \{4,8,9\} $. We also classify the longest additive MDS codes over $ {\mathbb F}_{16} $ which are linear over $ {\mathbb F}_4 $. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for $ q \in \{ 2,3\} $.
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria
dc.subject.lcshGeometry
dc.subject.lcshError-correcting codes (Information theory)
dc.subject.otherMDS codes
dc.subject.otherMDS conjecture
dc.subject.otherquantum codes
dc.subject.otheradditive codes
dc.subject.otherstabiliser codes
dc.subject.otherarcs
dc.titleOn additive MDS codes over small fields
dc.typeArticle
dc.subject.lemacGeometria finita
dc.subject.lemacCodis de correcció d'errors (Teoria de la informació)
dc.contributor.groupUniversitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics
dc.identifier.doi10.3934/amc.2021024
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::51 Geometry::51E Finite geometry and special incidence structures
dc.subject.amsClassificació AMS::94 Information And Communication, Circuits::94B Theory of error-correcting codes and error-detecting codes
dc.relation.publisherversionhttps://www.aimsciences.org/article/doi/10.3934/amc.2021024
dc.rights.accessOpen Access
local.identifier.drac32540314
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82166-P/ES/COMBINATORIA GEOMETRICA, ALGEBRAICA Y PROBABILISTICA/
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113082GB-I00/ES/COMBINATORIA: NUEVAS TENDENCIAS Y APLICACIONES/
local.citation.authorBall, S.; Gamboa, G.; Lavrauw, M.
local.citation.publicationNameAdvances in mathematics of communications
local.citation.volume0
local.citation.number0


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record