dc.contributor.author | Ball, Simeon Michael |
dc.contributor.author | Gamboa Jimenez, Gonzalo |
dc.contributor.author | Lavrauw, Michel |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2023-02-14T16:21:10Z |
dc.date.available | 2023-02-14T16:21:10Z |
dc.date.issued | 2022 |
dc.identifier.citation | Ball, S.; Gamboa, G.; Lavrauw, M. On additive MDS codes over small fields. "Advances in mathematics of communications", Agost 2023, vol. 17, núm. 4, p. 828-844. |
dc.identifier.issn | 1930-5338 |
dc.identifier.uri | http://hdl.handle.net/2117/383024 |
dc.description.abstract | Let $ C $ be a $ (n,q^{2k},n-k+1)_{q^2} $ additive MDS code which is linear over $ {\mathbb F}_q $. We prove that if $ n \geq q+k $ and $ k+1 $ of the projections of $ C $ are linear over $ {\mathbb F}_{q^2} $ then $ C $ is linear over $ {\mathbb F}_{q^2} $. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over $ {\mathbb F}_q $ for $ q \in \{4,8,9\} $. We also classify the longest additive MDS codes over $ {\mathbb F}_{16} $ which are linear over $ {\mathbb F}_4 $. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for $ q \in \{ 2,3\} $. |
dc.language.iso | eng |
dc.publisher | American Institute of Mathematical Sciences |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Geometria |
dc.subject.lcsh | Geometry |
dc.subject.lcsh | Error-correcting codes (Information theory) |
dc.subject.other | MDS codes |
dc.subject.other | MDS conjecture |
dc.subject.other | quantum codes |
dc.subject.other | additive codes |
dc.subject.other | stabiliser codes |
dc.subject.other | arcs |
dc.title | On additive MDS codes over small fields |
dc.type | Article |
dc.subject.lemac | Geometria finita |
dc.subject.lemac | Codis de correcció d'errors (Teoria de la informació) |
dc.contributor.group | Universitat Politècnica de Catalunya. GAPCOMB - Geometric, Algebraic and Probabilistic Combinatorics |
dc.identifier.doi | 10.3934/amc.2021024 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::51 Geometry::51E Finite geometry and special incidence structures |
dc.subject.ams | Classificació AMS::94 Information And Communication, Circuits::94B Theory of error-correcting codes and error-detecting codes |
dc.relation.publisherversion | https://www.aimsciences.org/article/doi/10.3934/amc.2021024 |
dc.rights.access | Open Access |
local.identifier.drac | 32540314 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-82166-P/ES/COMBINATORIA GEOMETRICA, ALGEBRAICA Y PROBABILISTICA/ |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113082GB-I00/ES/COMBINATORIA: NUEVAS TENDENCIAS Y APLICACIONES/ |
local.citation.author | Ball, S.; Gamboa, G.; Lavrauw, M. |
local.citation.publicationName | Advances in mathematics of communications |
local.citation.volume | 0 |
local.citation.number | 0 |