On additive MDS codes over small fields
View/Open
Cita com:
hdl:2117/383024
Document typeArticle
Defense date2022
PublisherAmerican Institute of Mathematical Sciences
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectCOMBINATORIA GEOMETRICA, ALGEBRAICA Y PROBABILISTICA (AEI-MTM2017-82166-P)
COMBINATORIA: NUEVAS TENDENCIAS Y APLICACIONES (AEI-PID2020-113082GB-I00)
COMBINATORIA: NUEVAS TENDENCIAS Y APLICACIONES (AEI-PID2020-113082GB-I00)
Abstract
Let $ C $ be a $ (n,q^{2k},n-k+1)_{q^2} $ additive MDS code which is linear over $ {\mathbb F}_q $. We prove that if $ n \geq q+k $ and $ k+1 $ of the projections of $ C $ are linear over $ {\mathbb F}_{q^2} $ then $ C $ is linear over $ {\mathbb F}_{q^2} $. We use this geometrical theorem, other geometric arguments and some computations to classify all additive MDS codes over $ {\mathbb F}_q $ for $ q \in \{4,8,9\} $. We also classify the longest additive MDS codes over $ {\mathbb F}_{16} $ which are linear over $ {\mathbb F}_4 $. In these cases, the classifications not only verify the MDS conjecture for additive codes, but also confirm there are no additive non-linear MDS codes which perform as well as their linear counterparts. These results imply that the quantum MDS conjecture holds for $ q \in \{ 2,3\} $.
CitationBall, S.; Gamboa, G.; Lavrauw, M. On additive MDS codes over small fields. "Advances in mathematics of communications", Agost 2023, vol. 17, núm. 4, p. 828-844.
ISSN1930-5338
Publisher versionhttps://www.aimsciences.org/article/doi/10.3934/amc.2021024
Files | Description | Size | Format | View |
---|---|---|---|---|
smalladditive.pdf | 343,8Kb | View/Open |