Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.109 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Escola d'Enginyeria de Barcelona Est
  • Grau en Enginyeria Electrònica Industrial i Automàtica (Pla 2009)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Escola d'Enginyeria de Barcelona Est
  • Grau en Enginyeria Electrònica Industrial i Automàtica (Pla 2009)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D printed microwave sensors for fusion plasma characterization - photonic crystal temperature sensor

Thumbnail
View/Open
TFG_Izaskun_Comas.pdf (2,213Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/382994

Show full item record
Comas Álvarez, Maite Izaskun
Author's e-mailiizaskuncomasarrobagmail.com
Tutor / directorBenítez Iglesias, RaúlMés informacióMés informacióMés informació
CovenanteeStichting Fontys
Document typeBachelor thesis
Date2022-07-29
Rights accessOpen Access
Attribution-NonCommercial-ShareAlike 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 4.0 International
Abstract
This BeCreative minor project is focused on the development of an 3D-printed sensor. This sensor is being made to help the development of a fusion reactor. There are still issues with a fusion reactor, this BeCreative project group will try and overcome one of these issues. The issue lies within the diverter, a diverter is a part in the bottom of the reactor and because of the harsh conditions in the reactor will erode. The sensor that the group is developing will be used to get more information about this process and maybe come to a conclusion what other materials, structures or control strategies can be used to increase the lifetime this part of the reactor. The group is working together with the Dutch Institute for Fundamental Energy Research, they will help the group with additional information, resources, and equipment. Because this is a research project the group has made a research question. This question will be answered at the end of the project. The main research question is: how is it possible to get data of the divertor’s state of health during the exposure period of plasma? This question will be answered with a few sub questions, these can be found in chapter 4. Theoretical Research. A photonic crystal is a repeating structure in which the refractive index changes periodically. The sensor will be made from a photonic crystal because it can be made to act an electromagnetic wave filter and designed to resonate at a chosen frequency. By making it out of a single heat resistant material (stainless steel, tungsten) the photonic crystal will be able to work at high temperatures and due to thermal expansion the resonating frequency will shift. This shift can be made visible using a network analyser temperature can be derived from it. This photonic crystal will be made by a metal 3D-printer and the first prototypes will be made with the material stainless steel 316L. All the testing and measuring will be done on these prototypes, the follow-up project team to this project is going to make it out of tungsten so much higher temperature can be measured without the sensor breaking. During this project the photonic crystal will be designed to work between 4-8,5 GHz and measurements up to 200 °C this is purely because of the available equipment. In the future a sensor can be designed to work on much higher frequencies and temperatures. In this project the group will purely focus on proving the concept of using a photonic crystal as a temperature sensor. In the follow-up to this project the next steps will be detecting material degradation, Ion implantation and magnetic Flux density. But this is out of scope for this relatively brief research project of 20 weeks The sensor will be tested by simulations in COMSOL and measurements in an oven and or on a hotplate with oil. The results that are listed in chapter 7. Results, are in comparison with the simulations in chapter 5.3 COMSOL Design this means that the conclusion is made that the temperature sensor works. There are few things that can be concluded after these tests, first the photonic crystal is temperature sensitive, and therefore can be uses as a temperature sensor. Second the results have demonstrate that 3D printing has sufficient precision and quality to make a microwave photonic crystal. And as last conclusion, the results show an agreement between theoretical models and experimental results, which indicates that the model can be used to optimize the designs without first experimentally testing each design.
SubjectsDetectors, Photonic crystals, Detectors, Cristalls fotònics
DegreeGRAU EN ENGINYERIA ELECTRÒNICA INDUSTRIAL I AUTOMÀTICA (Pla 2009)
URIhttp://hdl.handle.net/2117/382994
Collections
  • Escola d'Enginyeria de Barcelona Est - Grau en Enginyeria Electrònica Industrial i Automàtica (Pla 2009) [762]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
TFG_Izaskun_Comas.pdf2,213MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina