Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
76.492 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DeVIS: Making Deformable Transformers Work for Video Instance Segmentation

Thumbnail
View/Open
Master_Thesis_AdriaCaelles.pdf (51,49Mb)
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/382651

Show full item record
Caelles Prat, Adrià
Tutor / directorGiró Nieto, XavierMés informacióMés informació; Leal-Taixe, Laura
CovenanteeTechnische Universität München
Document typeMaster thesis
Date2022-06-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Video Instance Segmentation (VIS) jointly tackles multi-object detection, tracking, and segmentation in video sequences. In the past, VIS methods mirrored the fragmentation of these subtasks in their architectural design, hence missing out on a joint solution. Transformers recently allowed to cast the entire VIS task as a single set-prediction problem. Nevertheless, the quadratic complexity of existing Transformer-based VIS methods requires long training times, high memory requirements, and processing of low-single-scale feature maps.Deformable attention provides a more efficient alternative but its application to the temporal domain or the segmentation task have not yet been explored. In this work, we present Deformable VIS (DeVIS), a VIS method which capitalizes on the efficiency and performance of deformable Transformers. To reason about all VIS subtasks jointly over multiple frames, we present temporal multi-scale deformable attention with instance-aware object queries. We further introduce a new image and video instance mask head which exploits multi-scale features, and perform near-online video processing with multi-cue clip tracking. DeVIS benefits from comparatively small memory as well as training time requirements, and achieves state-of-the-art results on the YouTube-VIS 2019 and 2021, as well as the challenging OVIS dataset.
SubjectsVideo recording, Image segmentation, Vídeo, Imatges--Segmentació
DegreeMÀSTER UNIVERSITARI EN TECNOLOGIES AVANÇADES DE TELECOMUNICACIÓ (Pla 2019)
URIhttp://hdl.handle.net/2117/382651
Collections
  • Màsters oficials - Master's degree in Advanced Telecommunication Technologies (MATT) [206]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Master_Thesis_AdriaCaelles.pdf51,49MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina