Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.765 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IOC - Institut d'Organització i Control de Sistemes Industrials
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IOC - Institut d'Organització i Control de Sistemes Industrials
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous mass estimation and class classification of scrap metals using deep learning

Thumbnail
View/Open
Version postprint de Articulo de revista (2,673Mb)
 
10.1016/j.resconrec.2022.106272
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/381993

Show full item record
Diaz-Romero, Dillam
Van den Eynde, Simon
Sterkens, Wouter
Engelen, Bart
Zaplana Agut, IsiahMés informacióMés informacióMés informació
Dewulf, Wim
Goedemé, Toon
Peeters, Jef R.
Document typeArticle
Defense date2022-06
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
While deep learning has helped improve the performance of classification, object detection, and segmentation in recycling, its potential for mass prediction has not yet been explored. Therefore, this study proposes a system for mass prediction with and without feature extraction and selection, including principal component analysis (PCA). These feature extraction methods are evaluated on a combined Cast (C), Wrought (W) and Stainless Steel (SS) image dataset using state-of-the-art machine learning and deep learning algorithms for mass prediction. After that, the best mass prediction framework is combined with a DenseNet classifier, resulting in multiple outputs that perform both object classification and object mass prediction. The proposed architecture consists of a DenseNet neural network for classification and a backpropagation neural network (BPNN) for mass prediction, which uses up to 24 features extracted from depth images. The proposed method obtained 0.82 R2, 0.2 RMSE, and 0.28 MAE for the regression for mass prediction with a classification performance of 95% for the C&W test dataset using the DenseNet+BPNN+PCA model. The DenseNet+BPNN+None model without the selected feature (None) used for the CW&SS test data had a lower performance for both classification of 80% and the regression (0.71 R2, 0.31 RMSE, and 0.32 MAE). The presented method has the potential to improve the monitoring of the mass composition of waste streams and to optimize robotic and pneumatic sorting systems by providing a better understanding of the physical properties of the objects being sorted.
Description
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
CitationDiaz-Romero, D. [et al.]. Simultaneous mass estimation and class classification of scrap metals using deep learning. "Resources, conservation and recycling", Juny 2022, vol. 181, núm. article 106272, p. 1-13. 
URIhttp://hdl.handle.net/2117/381993
DOI10.1016/j.resconrec.2022.106272
ISSN0921-3449
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S0921344922001203
Collections
  • IOC - Institut d'Organització i Control de Sistemes Industrials - Articles de revista [119]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Simultaneous Ma ... s Classification Clean.pdfVersion postprint de Articulo de revista2,673MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina