Show simple item record

dc.contributor.authorCrowley, James L
dc.contributor.authorCoutaz, Joëlle
dc.contributor.authorGrosinger, Jasmin
dc.contributor.authorVázquez Salceda, Javier
dc.contributor.authorAngulo Bahón, Cecilio
dc.contributor.authorSanfeliu Cortés, Alberto
dc.contributor.authorIocchi, Luca
dc.contributor.authorCohn, Anthony G.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2023-02-02T08:35:26Z
dc.date.available2023-02-02T08:35:26Z
dc.date.issued2023-01
dc.identifier.citationCrowley, J. [et al.]. A hierarchical framework for collaborative artificial intelligence. "IEEE pervasive computing", gener-març 2023, vol. 22, núm. 1, p. 9-18.
dc.identifier.issn1558-2590
dc.identifier.urihttp://hdl.handle.net/2117/381675
dc.description.abstractWe propose a hierarchical framework for collaborative intelligent systems. This framework organizes research challenges based on the nature of the collaborative activity and the information that must be shared, with each level building on capabilities provided by lower levels. We review research paradigms at each level, with a description of classical engineering-based approaches and modern alternatives based on machine learning, illustrated with a running example using a hypothetical personal service robot. We discuss cross-cutting issues that occur at all levels, focusing on the problem of communicating and sharing comprehension, the role of explanation and the social nature of collaboration. We conclude with a summary of research challenges and a discussion of the potential for economic and societal impact provided by technologies that enhance human abilities and empower people and society through collaboration with intelligent systems.
dc.description.sponsorshipThis work was supported in part by the MIAI Multidisciplinary AI Institute at the Universite Grenoble Alpes (MIAI@Grenoble Alpes - ANR-19-P3IA-0003), in part by the EU H2020 ICT AI4EU under Grant 825619, and in part by the EU H2020 project Humane AI Net under Grant 952026.
dc.format.extent10 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subject.lcshMachine learning
dc.subject.lcshIntelligent agents (Computer software)
dc.subject.otherCollaboration
dc.subject.otherBehavioral sciences
dc.subject.otherTask analysis
dc.subject.otherRobots
dc.subject.otherIntelligent systems
dc.subject.otherRobot sensing systems
dc.subject.otherProtocols
dc.titleA hierarchical framework for collaborative artificial intelligence
dc.typeArticle
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacAgents intel·ligents (Programari)
dc.contributor.groupUniversitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents
dc.identifier.doi10.1109/MPRV.2022.3208321
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9918176
dc.rights.accessOpen Access
local.identifier.drac34880793
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/825619/EU/A European AI On Demand Platform and Ecosystem/AI4EU
local.citation.authorCrowley, J.; Coutaz, J.; Grosinger, J.; Vazquez-Salceda, J.; Angulo, C.; Sanfeliu, A.; Iocchi, L.; Cohn, A.
local.citation.publicationNameIEEE pervasive computing
local.citation.volume22
local.citation.number1
local.citation.startingPage9
local.citation.endingPage18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record