Data-driven leak localization in WDN using pressure sensor and hydraulic information

Cita com:
hdl:2117/381338
Document typeArticle
Defense date2022
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Maintaining a good quality of service under a wide range of operational management is challenging for water utilities. One of the significant challenges is the location of water leaks in the large-scale water distribution networks (WDN) due to limited data information throughout the system, generally having only flow sensors at the system's entrance and some pressure sensors in some selected nodes. In addition, most systems do not have a network hydraulic model. Therefore, when using the hydraulic model, the presence of model errors, such as nodal demand uncertainty and measurement noise, can interfere with the performance of the leak location method. This work presents a fully data-driven technique to reduce the area of the leak localization in the WDN, using Graph theory to represent the network. To do so, we have developed distance clustering with pre-defined centroids that are the sensor pressure information and some selected nodes. Furthermore, extra pressure information of leak events in the selected centroids is studied to develop a correlation between the pressure measurement and the event. Finally, the approach is evaluated in real-world water systems and discusses graphical results and key performance indicators.
CitationCosta Da Silva, D. [et al.]. Data-driven leak localization in WDN using pressure sensor and hydraulic information. "IFAC-PapersOnLine", 2022, vol. 55, núm. 5, p. 96-101.
ISSN2405-8963
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S2405896322010679
Files | Description | Size | Format | View |
---|---|---|---|---|
1-s2.0-S2405896322010679-main.pdf | 593,0Kb | View/Open |