Eigenvalue curves for generalized MIT bag models
View/Open
GeneralizedMIT.pdf (708,4Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/381227
Document typeArticle
Defense date2022-11-22
PublisherSpringer Nature
Rights accessRestricted access - publisher's policy
(embargoed until 2023-11-22)
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
We study spectral properties of Dirac operators on bounded domains O¿R3 with boundary conditions of electrostatic and Lorentz scalar type and which depend on a parameter t¿R; the case t=0 corresponds to the MIT bag model. We show that the eigenvalues are parametrized as increasing functions of t, and we exploit this monotonicity to study the limits as t¿±8. We prove that if O is not a ball then the first positive eigenvalue is greater than the one of a ball with the same volume for all t large enough. Moreover, we show that the first positive eigenvalue converges to the mass of the particle as t¿-8, and we also analyze its first order asymptotics.
CitationArrizabalaga, N. [et al.]. Eigenvalue curves for generalized MIT bag models. "Communications in Mathematical Physics", 22 Novembre 2022, vol. 397, p. 337-392.
ISSN1432-0916
Publisher versionhttps://link.springer.com/article/10.1007/s00220-022-04526-3
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
GeneralizedMIT.pdf![]() | 708,4Kb | Restricted access |